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• Data from 5873 observational rainfall stations and 288 NCEP
gridcells

• Restrict to 1970–1999 summer data and stations with no
more than 10% missing data

• Threshold set at a given percentile of all available observa-
tions (including 0s)

• No declustering — assume each day is independent of every
other

• Fit “point process” form of POT model and calculate 50-
year return values

• For each grid cell containing at least 10 observational sta-
tions, compute RV50 from pooled data and compare with
gridcell RV50

• Ratios of point to grid RV50 range from 1.34 to 8.85
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Objectives of the study:

1. Use spatial statistics to interpolate daily data and thereby

estimate a grid-cell average for each day

2. Estimate 50-year return values based on estimated daily grid-

cell averages

3. Provide an independent evaluation of how well NCEP is doing

The objectives are different from Elizabeth Shamseldin’s project

presented last week because I don’t directly address the down-

scaling issue. I view it as a complementary project aimed at

evaluating the quality of NCEP or any other reanalysis or RCM

we may choose to examine.
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II. STATISTICAL MODEL
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• Fit GEV to tails of distribution — equivalent to

1− F (y) = Pr{Y > y} ≈
1

T

(
1 + ξ

y − µ

ψ

)−1/ξ

+
, y ≥ u,

u is threshold, x+ = max(x,0) and T is number of relevant
days per year (here 92)

• Estimate F (0) by sample proportion of zeros

• For 0 < y < u, divide range into 20 equiprobable intervals and
assume F (y) is piecewise linear within each interval. Thus
we have an estimate of F (y) for the entire range of y

• Define Z = Φ−1(F (Y )) so that Z has marginal N [0,1] distri-
bution. Values Y = 0 are transformed into u∗ = Φ−1(F (0))
which becomes the natural threshold — Z values censored
at u∗.

• We assume the underlying Z process is a Gaussian spatial
process.
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Related ideas in the literature:

Coles and Tawn (1996) developed a similar approach but assum-

ing Z is max-stable. They argued that this is more suitable for

studying extremal properties but it is unclear how realistic this

model is. Also, their paper is based on a particular represen-

tation of max-stable processes and the estimation methods are

computationally intensive for the kind of applications we have in

mind.

Sansó and Guenni (2000, 2004) proposed an embedded Gaussian

model similar in spirit to what I propose here. They fitted the

model in a fully Bayesian approach with MCMC. However their

data examples are much more limited than the data considered

here and I question whether a computationally intensive MCMC

approach is feasible for this problem.
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III. ESTIMATING A THRESHOLDED GAUSSIAN

PROCESS
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Basic model: Y = (Y1, ..., Yn)
T has a multivariate normal dis-

tribution, N [0,Σ(θ)] where Σ(θ) is a known function of finite-
dimensional parameter θ. However we observe only those values
Yi for which Yi > u — rest are censored.

This model is replicated independently for each of N days.

How should we estimate θ?

On any given day, let A = {i : Yi > u} and B = {i : Yi ≤ u}.
Suppose |B| = m. Also let YA, YB be the corresponding sub-
vectors.

If we condition on YA, then we can write down the (MVN) con-
ditional distribution of YB. Therefore, the contribution from this
day to the exact likelihood is given by

f(YA)× Pr{Yi ≤ u, i ∈ B | YA}
and could be evaluated exactly if we had an efficient algorithm
to evaluate the m-dimensional multivariate normal distribution.
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Option 1: Use exact or simulated MVN distribution function.

Exact algorithms due to, e.g. Schervish (1984), but does not

work well in high dimensions. Usual recommendation in high

dimensions is simulation, but this takes us back to MCMC eval-

uation.

Option 2: Use EVT approximation to MVN distribution.

Possible use of Stein-Chen method, e.g. Roos (1994), Raab

(1998)

It’s not clear to me that the error in such approximations is small

(in this sort of context), or exactly how one would determine that

issue.
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Option 3: Break up into a series of bivariate normal approxima-

tions, for which there are well-established algorithms, e.g. Owen

(1956), Donnelly (1973), Young and Minder (1974).

So if we reorder the data so that B = {1, ...,m}, A = {m+1, ..., n},
the idea is to approximate Pr{Yi ≤ u, i = 1, ...,m | YA} by

Pr{Y1 ≤ u| YA} × Pr{Y2 ≤ u| Y1 ≤ u, YA}
× Pr{Y3 ≤ u| Y2 ≤ u, YA}
...

× Pr{Ym ≤ u| Ym−1 ≤ u, YA}.

Problem with this: does not lead to consistent estimators.

12



Consider n = 3. Break up likelihood into 8 components corre-

sponding to (Y1 > u, Y2 > u, Y3 > u), (Y1 > u, Y2 > u, Y3 ≤ u),...,

(Y1 ≤ u, Y2 ≤ u, Y3 ≤ u). Only the last of these is different from

exact MLE so let’s concentrate on that case.

Exact likelihood would be

Pr{Y1 ≤ u} · Pr{Y2 ≤ u | Y1 ≤ u} · Pr{Y3 ≤ u | Y1 ≤ u, Y2 ≤ u}.

Approximate this by

Pr{Y1 ≤ u} · Pr{Y2 ≤ u | Y1 ≤ u} · Pr{Y3 ≤ u | Y2 ≤ u}.

The difference in log likelihoods is

`approx − `exact = log
Pr{Y3 ≤ u | Y2 ≤ u}

Pr{Y3 ≤ u | Y1 ≤ u, Y2 ≤ u}
.
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When this is differentiated with respect to θ we have

E

{
∂`exact
∂θ

}
= 0

and so

E

{
∂`approx

∂θ

}
=

∂

∂θ

{
log

Pr{Y3 ≤ u | Y2 ≤ u}
Pr{Y3 ≤ u | Y1 ≤ u, Y2 ≤ u}

}
·

·Pr{Y1 ≤ u, Y2 ≤ u, Y3 ≤ u}.

Unless Y1 and Y3 are conditionally independent given Y2, this

expression will not be 0.

In other words, the estimating equations are not unbiased. Typ-

ically this is a necessary condition for consistency.

However, this suggests another approach.
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Option 4: Apply the pairwise principle to the whole of the
likelihood, not just part of it.

In other words, for a fixed ordering of indices, replace exact LH

L(Y1) · L(Y2 | Y1) · L(Y3 | Y2, Y1)...

by a pairwise approximation

L(Y1) · L(Y2 | Y1) · L(Y3 | Y2)...

Here L(Yi+1 | Yi) is the conditional likelihood of Yi+1 given Yi
allowing for censoring, i.e.

1. If Yi > u, Yi+1 > u, L = f(Yi+1 | Yi),

2. If Yi > u, Yi+1 ≤ u, L = Pr{Yi+1 ≤ u | Yi},

3. If Yi ≤ u, Yi+1 > u, L =
Pr{Yi≤u | Yi+1}f(Yi+1)

Pr{Yi≤u}
,

4. If Yi ≤ u, Yi+1 ≤ u, L =
Pr{Yi≤u,Yi+1≤u}

Pr{Yi≤u}
.
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This is similar to proposals for approximate likelihood for spatial

processes by Vecchia (1988) and Stein, Chi and Welty (2004).

The estimating equations are unbiased, essentially because each

component of the approximate log likelihood is.

Therefore, estimates are consistent and nearly unbiased.

Not asymptotically efficient, but we can estimate approximate

variances through information sandwich approximation.
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Simulation Study

Use Matérn covariance function:

C0(t) =
θ1

2θ3−1Γ(θ3)

(
2
√
θ3t

θ2

)θ3
Kθ3

(
2
√
θ3t

θ2

)
.

Here θ1, θ2, θ3 are respectively scale, range and shape parameters.

Simulate station locations in a 1× 1 unit region — each sample
consists of 100 days’ independent data at 50 locations.

Employ two values of each of θ2 and θ3 (see Fig.).

Use two methods of ordering stations: mindist and maxvar.

PL1, PL2 are pairwise likelihoods using maxvar, mindist orderings
respectively

Options for threshold: none, u = 1 or u = 2. Exact MLE
available only in no-threshold case.
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Four Matern covariances used for simulation study
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The full simulation consists of 1000 replications used to com-

pute:

1. Mean and RMSE of estimator

2. Coverage probability of nominal 90% and 95% confidence in-

tervals without information sandwich correction (CP1, CP2)

3. Coverage probability of nominal 90% and 95% confidence

intervals with information sandwich correction (CP3, CP4)
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True scale=1.0, range=0.3, shape=0.5

Parameter Estimator u Mean RMSE CP1 CP2 CP3 CP4
Scale MLE — .998 .030 90 95 — —
Scale PL1 — .998 .031 70 78 88 94
Scale PL2 — .998 .031 81 88 88 93
Scale PL1 1 .999 .054 64 73 90 94
Scale PL2 1 .999 .053 77 85 88 94
Scale PL1 2 .999 .050 76 84 91 95
Scale PL2 2 .999 .050 82 89 90 95
Range MLE — .299 .012 89 95 — —
Range PL1 — .299 .019 82 89 89 94
Range PL2 — .299 .014 83 89 89 94
Range PL1 1 .298 .039 85 90 87 91
Range PL2 1 .297 .027 84 91 87 92
Range PL1 2 .300 .104 81 85 77 82
Range PL2 2 .292 .066 84 89 82 87
Shape MLE — .501 .011 89 93 — —
Shape PL1 — .501 .015 86 92 88 93
Shape PL2 — .501 .013 87 93 87 92
Shape PL1 1 .506 .037 86 92 86 91
Shape PL2 1 .505 .031 88 93 86 91
Shape PL1 2 .539 .119 87 93 74 82
Shape PL2 2 .531 .098 90 95 78 85
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True scale=1.0, range=0.7, shape=0.5

Parameter Estimator u Mean RMSE CP1 CP2 CP3 CP4
Scale MLE — 1.000 .047 90 95 — —
Scale PL1 — 1.000 .052 49 58 89 94
Scale PL2 — 1.000 .053 71 79 88 94
Scale PL1 1 1.000 .084 48 56 88 93
Scale PL2 1 1.000 .084 71 79 89 94
Scale PL1 2 0.989 .087 52 60 84 90
Scale PL2 2 .991 .088 66 75 85 91
Range MLE — .702 .043 89 94 — —
Range PL1 — .704 .074 48 56 89 93
Range PL2 — .701 .049 77 84 88 92
Range PL1 1 .697 .118 58 67 85 90
Range PL2 1 .699 .087 81 89 88 92
Range PL1 2 .635 .226 71 80 69 74
Range PL2 2 .674 .190 81 86 78 83
Shape MLE — .500 .009 90 94 — —
Shape PL1 — .500 .016 69 78 89 94
Shape PL2 — .501 .011 89 95 88 94
Shape PL1 1 .504 .031 77 85 88 93
Shape PL2 1 .503 .027 90 95 86 93
Shape PL1 2 .536 .087 85 92 76 82
Shape PL2 2 .521 .078 92 96 80 87

22



True scale=1.0, range=0.3, shape=2.0

Parameter Estimator u Mean RMSE CP1 CP2 CP3 CP4
Scale MLE — .999 .033 89 94 — —
Scale PL1 — .999 .036 64 73 90 95
Scale PL2 — .998 .036 86 92 89 94
Scale PL1 1 .999 .060 60 70 91 96
Scale PL2 1 .999 .058 86 92 90 95
Scale PL1 2 .998 .063 68 76 89 95
Scale PL2 2 .999 .063 82 90 89 95
Range MLE — .300 .007 90 95 — —
Range PL1 — .299 .027 78 84 87 91
Range PL2 — .299 012 90 95 89 94
Range PL1 1 .295 .047 69 73 75 79
Range PL2 1 .298 .026 89 92 86 91
Range PL1 2 .297 .074 73 81 72 79
Range PL2 2 .292 .052 75 80 73 79
Shape MLE — 2.005 .062 89 95 — —
Shape PL1 — 2.115 .48 78 81 83 87
Shape PL2 — 2.034 .20 94 96 92 95
Shape PL1 1 3.43 3.21 62 64 64 67
Shape PL2 1 2.18 .61 84 88 82 86
Shape PL1 2 5.46 5.36 44 47 42 44
Shape PL2 2 4.39 4.34 55 58 53 55
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True scale=1.0, range=0.7, shape=2.0

Parameter Estimator u Mean RMSE CP1 CP2 CP3 CP4
Scale MLE — 1.001 .051 79 84 — —
Scale PL1 — 1.002 .067 44 49 90 95
Scale PL2 — 1.002 .069 86 93 90 94
Scale PL1 1 1.003 .104 45 50 89 93
Scale PL2 1 1.002 .106 85 89 90 94
Scale PL1 2 .995 .109 47 55 87 92
Scale PL2 2 1.010 .115 78 86 90 93
Range MLE — .701 .106 81 85 — —
Range PL1 — .703 .079 35 41 85 91
Range PL2 — .700 .050 86 90 87 90
Range PL1 1 .694 .128 42 47 78 83
Range PL2 1 .691 .098 74 78 75 80
Range PL1 2 .638 .189 45 53 58 64
Range PL2 2 .711 .159 75 80 73 80
Shape MLE — 1.999 .028 84 88 — —
Shape PL1 — 2.098 .471 48 60 81 85
Shape PL2 — 2.045 .298 83 87 82 85
Shape PL1 1 2.99 2.43 54 57 70 73
Shape PL2 1 2.95 2.57 65 69 63 66
Shape PL1 2 6.36 5.88 36 37 38 40
Shape PL2 2 4.57 4.63 51 55 45 48
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Conclusions from simulation study

1. Estimates generally unbiased except for shape parameter in

threshold situation when true shape parameter is 2

2. RMSE is smallest for exact MLE, increases for approximate

MLE as threshold rises

3. PL2 generally better than PL1 (i.e. prefer minimum-distance

ordering of stations)

4. There is an overall problem of undercoverage of the con-

fidence intervals. In many cases the information sandwich

correction helps the situation, but not all.
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IV. APPLICATION TO THE RAINFALL DATA
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Step 1: Estimating the GEV and spatial parameters

• Common distribution for all stations within a grid cell

• Fit GEV to exceedances over a high threshold based on
pooled data from stations. In most cases I used the 0.975
empirical quantile but in a few cases a higher threshold.

• Use piecewise linear approximation for CDF below threshold.

• Transform to normality, fit Gaussian model. In many cases,
the Matérn covariance did not result in a satisfactory model
fit so I switched to the exponential model with nugget

C0(t) = θ1I(t = 0) + θ2 exp
(
−

t

eθ3

)
I(t > 0).

Estimation via pairwise likelihood based on ordering of sta-
tions that minimizes total distance (simulated annealing).

• Used natural threshold u∗, but also considered alternatives
u > u∗ (a separate issue from the choice of threshold for
initial GEV fit).
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Example: Station 185, natural threshold u∗ = .5306 (parameter
estimates with SE by information sandwich in parentheses)

Threshold θ̂1 θ̂2 θ̂3
.5306 1.037 .665 1.37

(.015) (.015) (.04)
1 1.007 .630 .84

(.013) (.017) (.04)
2 1.008 .724 .15

(.018) (.062) (.37)

• Range θ3 decreases with increasing threshold, implying same
Gaussian process does not apply to all levels.

• Generalization: replace Z by a mixture of Gaussian pro-
cesses?

• Despite the clearly significant difference in the models fit-
ted to different thresholds, it does not seem to make much
difference to the interpolations (specific example later)
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Step 2: Interpolating the missing and censored observations in

the Gaussian process

Use MCMC fixing spatial covariance parameters. 1000 warm-up

iterations, followed by either 500 or 1000 iterations.
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Step 3: Interpolating Gaussian process to a 30 × 30 array of

locations within the grid cell

Use second phase of MCMC in Step 2, every 10th iteration gen-

erate full sample of values conditional on observed and imputed

data at observation locations.

Suppose Σ =

(
Σ11 Σ12
Σ21 Σ22

)
where index 1 represents observa-

tion stations and index 2 represents the 900 interpolation points.

Calculate Cholesky Σ22 − Σ21Σ
−1
11 Σ12 = UTU . Then simulate

Z2 = Σ21Σ
−1
11Z1 + UTZ0 where Z0 is white noise.

A trick: All values of U less than .01 were set to 0. This speeds

up computation time by a factor typically between 4 and 10.
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Step 4: Transform each predicted value back to original marginal

distribution by inverting initial transformation step.
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Step 5: Compute summary statistics

For each of the 900 interpolation points, average over iterations

to obtain a single “predicted value” for that location for each

day.

Also average over the interpolation points to produce a predicted

value for grid-cell average, henceforth denoted PRED.

However we also utilize the information from the individual it-

erations to calculate a predictive distribution for the grid-cell

average for each day.
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V. RESULTS
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Grid Cell Representation
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Results for Grid Cell 185 (Threshold 0.5306)
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Results for Grid Cell 185 (Threshold 1.645)
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Results for Grid Cell 104
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Results for Grid Cell 222
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Results for Grid Cell 41
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50-Year Return Values for Cell 104
(B=Boulder; F=Fort Collins)
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Computing grid cell return values

For OBSV: use same threshold as used in constructing the spatial

analysis (in most cases, this was set at 97.5th percentile)

For PRED and NCEP: calculate RV50 (with delta method SE)

using 95th, 96th, 97th, 98th, 99th percentiles as thresholds. Use

the estimate for the lowest threshold that’s consistent with every

estimate above it, as judged by the SE.
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VI. SUMMARY AND CONCLUSIONS

• Return values computed from PRED are much closer to

those computed from NCEP than the original estimates com-

puted directly from the observational data

• However, clear discrepancies remain. In most cases, the re-

turn value computed from NCEP still underestimates that

from PRED.
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Future Work: Statistics

• Incorporate covariates and/or spatial dependence into pa-

rameters of marginal distributions

• Consider alternative spatial dependence models or extend to

spatial-temporal processes

• Alternatives to Gaussian processes, such as mixtures?
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Future Work: Climatology

The results show clearly that there is a smoothing effect —

return values based on grid-cell averages are smaller than those

based on individual observation stations.

However, NCEP seems to be taking this smoothing effect too

far.

Could a more realistic spatial statistics representation of sub-

grid-cell processes lead to improved parametrizations in climate

and weather-forecasting models?

47



VII. REFERENCES

Coles, S.G. and Tawn, J.A. (1996), Modelling extremes of the areal rainfall
process. J.R. Statist. Soc. B 58, 329–347.
Donnelly, T.G. (1973), Algorithm 462. Bivariate normal distribution. Com-
mun. Assoc. Comput. Mach. 16, 638.
Owen, D.B. (1956), Tables for computing bivariate normal probabilities. Ann.
Math. Statist. 27, 1075–1090.
Raab, M. (1998), Compound Poisson approximation of the number of ex-
ceedances in Gaussian sequences. Extremes 1, 295–321.
Roos, M. (1994), Stein’s method for compound Poisson approximation: The
local approach. Annals of Applied Probability 4, 1177–1187.
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