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This talk is based on the following preprints:

Smith, R.L. (2004), Asymptotic theory for kriging with estimated

parameters and its application to network design. Preliminary

version, available from

http://www.stat.unc.edu/postscript/rs/supp5.pdf

Zhu, Z. and Stein, M.L. (2004), Two-step spatial sampling de-

sign for prediction with estimated parameters. Preprint, Univer-

sity of North Carolina and University of Chicago.
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I Background on Spatial Interpolation and Kriging

We assume data follow a Gaussian random field with mean and

covariance functions represented as functions of finite-dimensional

parameters.

Define the prediction problem as(
Y
Y0

)
∼ N

[(
Xβ

xT0β

)
,

(
V wT

w v0

)]
where Y is an n-dimensional vector of observations, Y0 is some

unobserved quantity we want to predict, X and x0 are known re-

gressors, and β is a p-dimensional vectors of unknown regression

coefficients.
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Specifying the Covariances

The most common and widely used spatial models (stationary

and isotropic) assume the covariance between components Yi and

Yj is a function of the (scalar) distance between them, Cθ(dij).

For example,

Cθ(d) = σ exp

{
−
(
d

ρ

)κ}
,

where θ = (κ, σ, ρ), or

Cθ(d) =
σ

2ν−1Γ(ν)

(
2ν1/2d

ρ

)ν
Kν

(
2ν1/2d

ρ

)
,

where Kν is a modified Bessel function and we have θ = (ν, σ, ρ)

(Matérn).
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Estimation

Y ∼ N [Xβ, V (θ)]

1. Curve fitting to the variogram, based on residuals from OLS
regression.

2. Maximum likelihood

3. Restricted maximum likelihood (REML): β̂ by GLS regres-
sion, θ̂ chosen to maximize

`n(θ) = −
1

2
log |V (θ)| −

1

2
log |XTV (θ)−1X| −

G2(θ)

2

where G2 = Y TWY , W = V −1 − V −1X(XTV −1X)−1XTV −1,
is the generalized residual sum of squares.

6



Universal Kriging

(
Y
Y0

)
∼ N

[(
Xβ

xT0β

)
,

(
V wT

w v0

)]

Find a predictor Ŷ0 = λTY that minimizes σ2
0 = E

{
(Y0 − Ŷ0)

2
}

subject to E
{
Y0 − Ŷ0

}
= 0. This leads to

λ = wTV −1 + (x0 −XTV −1w)T (XTV −1X)−1XTV −1,

σ2
0 = v0 − wTV −1w+ (x0 −XTV −1w)T (XTV −1X)−1(x0 −XTV −1w).

In the traditional formulation, V , w and v0 are assumed known.

When they depend on unknown parameters θ, we first estimate

θ and use that to define V, w, v0. This is called the plug-in

approach.
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Bayesian Reformulation of Universal Kriging

We assume θ has a prior density π(θ), and β has a flat prior
independent of θ. The Bayesian predictive density of Y0 given Y

is

p(Y0 | Y ) =

∫ ∫
f(Y, Y0 | β, θ)π(θ)dβdθ∫ ∫
f(Y | β, θ)π(θ)dβdθ

...

=

∫
e`n(θ)ψ(θ)π(θ)dθ∫
e`n(θ)π(θ)dθ

(1)

where e`n(θ) is the restricted likelihood of θ and

ψ(θ) = 1√
2πσ2

0

exp

{
−1

2

(
Y0−λTY

σ0

)2
}
.

The REML estimator θ̂ is the value of θ that maximizes `n(θ).
We also write (1) as ψ̃, to distinguish it from the plug-in rule
ψ̂ = ψ(θ̂).
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An Example

Holland, Caragea and Smith (Atmospheric Environment, 2004),

interested in long-term time trends in atmospheric SO2 and par-

ticulate SO2−
4 , at 30 long-term monitor stations (CASTNet).

Estimated trend (percent change from 1990 to 1999), with stan-

dard errors, are shown on the next two figures.
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We fitted a spatial model to the estimated trend at each loca-

tion and constructed an interpolated surface by universal kriging,

using both plug-in and Bayesian approaches. We also estimated

the prediction standard errors by both methods.
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Although the two maps are not very different, there are percep-

tible differences, with the prediction standard errors being larger

under the Bayesian approach.

Next, we looked at regional average trend by averaging over a

lattice.
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Two lattices for “regional average” calculations
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Variable Region Model MLE Bayes 1 Bayes 2
SO2 Midwest (b) –40.03 –38.41 –39.80

(3.37) (3.64) (3.55)
SO2 Midwest (c) –40.27 –37.87 –40.18

(3.20) (3.60) (3.44)
SO2 Mid-Atlantic (b) –33.94 –36.56 –34.78

(3.56) (3.85) (3.84)
SO2 Mid-Atlantic (c) –32.84 –36.79 –34.11

(3.48) (3.67) (3.70)

SO2−
4 Midwest (b) –33.91 –34.59 –34.50

(3.95) (4.12) (4.02)

SO2−
4 Midwest (c) –36.16 –34.88 –35.72

(3.53) (3.94) (3.72)

SO2−
4 Mid-Atlantic (b) –31.19 –32.00 –31.64

(3.56) (3.74) (3.66)

SO2−
4 Mid-Atlantic (c) –31.76 –33.19 –32.14

(3.54) (3.83) (3.66)

Regional estimates using two spatial models, by maximum likeli-
hood and two Bayesian analyses. Predictive standard deviations
in parentheses.
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This example illustrates the application of spatial interpolation

using both the maximum likelihood plug-in approach, and a

Bayesian approach.

It also illustrates the point that there may be one or a small

number of specific quantities of interest, such as the regional

average for either the Midwest or Mid-Atlantic grid.

This raises the question of how we might design a network to

optimize the interpolation or prediction of specific quantities of

interest.
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II “Predictive” and “Estimative” Approaches
to Network Design (Zhu and Stein 2004)

Suppose we are interested in a specific Y0, e.g. the average
trend over the midwest region. How could we design a network
specifically to estimate that variable as accurately as possible?

The most obvious design criterion is σ2
0, the prediction error

variance. However, this ignores the effect of having to estimate
θ.

Harville and Jeske (1992) and Zimmerman and Cressie (1992)
proposed the following correction to the mean squared prediction
error:

V1 = σ2
0 + tr

{
I−1

(
∂λ

∂θ

)T
V

(
∂λ

∂θ

)}
where I is the observed information matrix for θ. This formula
corrects for the error in specifying the kriging weights λ.
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However, in calculating a prediction interval for Y0, it is also

necessary to consider the effect of σ2
0 being unknown. Zhu and

Stein defined

V2 =

(
∂σ2

0

∂θ

)T
I−1

(
∂σ2

0

∂θ

)
.

They suggested that some linear combination of V1 and V2
σ2
0

would

be a suitable design criterion taking account of both predictive

and estimative considerations. Following arguments of Stein

(1999), they suggested

V3 = V1 +
V2

2σ2
0

as a suitable combined criterion. However, it’s not clear exactly

why this particular linear combination is appropriate.
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Alternative Bayesian Approach

• For any data set, use MCMC to construct the Bayesian pre-
dictive distribution

• For any given design, run the Bayesian analysis on simulated
data sets to determine the expected length of Bayesian pre-
diction intervals

• Use an optimization algorithm (e.g. simulated annealing) to
find the optimal design

It is attractive to use Bayesian prediction intervals because they
automatically take account of parameter estimation. However,
implementation of this approach seems too computationally in-
tensive, and Zhu and Stein dismiss it in favor of their approxi-
mate approach. A further technical point is that there is no proof
that Bayesian prediction intervals actually outperform the plug-
in approach, when assessed for example by how close the actual
coverage probability is to the nominal coverage probability.
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III Kriging with Estimated Parameters

Redefine

ψ̃(z, Y ) =

∫
e`n(θ)+Q(θ)ψ(z, Y ; θ)dθ∫

e`n(θ)+Q(θ)dθ
(2)

where e`n(θ) is the restricted likelihood of θ, Q(θ) = logπ(θ) and

ψ(z, Y ; θ) = Φ
(
Y0−λTY

σ0

)
. Also let ψ̃−1 be inverse function, i.e.

ψ̃−1(P, Y ) is the value of z for which ψ̃(z, Y ) = P .

For P ∈ (0,1) define

zP (Y ; θ) = λTY + σ0Φ
−1(P ),

ẑP (Y ) = λ̂TY + σ̂0Φ
−1(P ),

z̃P (Y ) = ψ̃−1(P, Y ).
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For an estimator z∗P (could be ẑP or z̃P ) we would like to calculate

E {ψ(z∗P (Y ) ; Y, θ)− ψ(zP (Y ; θ) ; Y, θ)} (3)

and

E {z∗P (Y )− zP (Y ; θ)} (4)

(3) is called the coverage probability bias (CPB). (4) leads to

the expected length of a prediction interval (our proposed design

criterion) because for a 100(P2 − P1)% interval,

E
{
z∗P2

(Y )− z∗P1
(Y )

}
= E

{
zP2

− zP1

}
+E

{
z∗P2

− zP2

}
− E

{
z∗P1

− zP1

}
= σ0{Φ−1(P2)−Φ−1(P1)}+E

{
z∗P2

− zP2

}
− E

{
z∗P1

− zP1

}
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Define Ui =
∂`n(θ)
∂θi

, Uij = ∂2`n(θ)
∂θi∂θj

, Uijk = ∂3`n(θ)
∂θi∂θj∂θk

.

Other quantities Q(θ) = logπ(θ), λ(θ), σ0(θ). Suffixes denote

partial differentiation, e.g. Qi =
∂Q
∂θi

, σ0ij = ∂2σ0
∂θi∂θj

.

Let

κi,j = n−1E
{
UiUj

}
,

κijk = n−1E
{
Uijk

}
,

κi,jk = n−1E
{
UiUjk

}
.

Suppose inverse of {κi,j} matrix has entries {κi,j}. We assume

all these quantities are of O(1) as n → ∞ and we employ the

summation convention.
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Results

nE {ψ(ẑP (Y ) ; Y, θ)− ψ(zP (Y ) ; Y, θ)}

∼ φ(Φ−1(P ))Φ−1(P )

[
−

1

2
Φ−1(P )

2
κi,j

σ0iσ0j

σ2
0

+κi,jκk,`
(
κjk,` +

1

2
κjk`

)
σ0i

σ0
+

1

2
κi,j

{
σ0ij

σ0
−
λTi V λj

σ2
0

}

−
1

2
κi,kκj,` ·

1

nσ2
0

(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)]
,

nE {ψ(z̃P (Y ) ; Y, θ)− ψ(zP (Y ) ; Y, θ)}

∼ φ(Φ−1(P ))Φ−1(P )

[
κi,jκk,`

(
κjk,` + κjk`

) σ0i

σ0

−κi,j
(
σ0iσ0j

σ2
0

−
σ0ij

σ0

)
+ κi,j

σ0i

σ0
Qj

−
1

2
κi,kκj,` ·

1

nσ2
0

(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)]
.
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nE {ẑP − zP} ≈ Φ−1(P )
{
κi,jκk,`σ0`

(
κik,j +

1

2
κijk

)
+

1

2
κi,jσ0ij

}

nE {z̃P − zP} ≈ Φ−1(P )
{
κi,jκk,`σ0`(κik,j + κijk)

+κi,j
(
σ0ij −

σ0iσ0j

σ0

)
+ κi,jQjσ0i

+
1

2
Φ−1(P )

2
κi,j

σ0iσ0j

σ0
+

1

2
κi,j

λTi V λj

σ0

}
.
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We can find an estimator of zP whose second-order CPB is 0 in

two ways: either a Bayesian estimator with the matching prior,

or directly, by

z
†
P = ẑP − n−1Φ−1(P )

{
κ̂i,jκ̂k,`σ̂0`

(
κ̂ik,j +

1

2
κ̂ijk

)
+

1

2
κ̂i,j

(
σ̂0ij −

σ̂0iσ̂0j

σ̂0
Φ−1(P )

2
)
−

1

2σ̂0
κ̂i,jλ̂Ti V̂ λ̂j

−
1

2nσ̂0
κ̂i,jκ̂k,`

(
λ̂Tj V̂

∂Ŵ

∂θi
V̂
∂Ŵ

∂θk
V̂ λ̂` + λ̂Tj V̂

∂Ŵ

∂θk
V̂
∂Ŵ

∂θi
V̂ λ̂`

)}
.
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IV Application to Network Design

Suppose we use an estimator of zP whose second-order CPB is

0 (e.g. either the Bayes estimator with matching prior, or z†P ).

Use this to construct a two-sided prediction interval, with tail

probability 1− P in each tail. The approximate expected length

of this prediction interval is

2Φ−1(P )

√
σ2
0 + n−1κi,jλTi V λj + n−1Φ−1(P )

2
κi,jσ0iσ0j.

In the notation of Zhu and Stein (2004), the quantity under the

square root sign is

V1 +
Φ−1(P )

2

4
·
V2

σ2
0

.

Recall their own criterion was V3 = V1 + 1
2 ·

V2
σ2
0
.
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Two formulae for V3

V3 = V1 +
1

2
·
V2

σ2
0

(Zhu and Stein)

V3 = V1 +
Φ−1(P )

2

4
·
V2

σ2
0

(this talk)

The present formula has the unusual feature that the design

might depend on the desired coverage probability of a prediction

interval.

It is also tied directly to two specific methods of constructing a

prediction interval whose second-order coverage probability bias

is 0, whereas previous approaches have not shown how to con-

struct such an interval.
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V Summary and Conclusions

1. The second-order coverage probability bias of the Bayes es-
timator of zP is smaller than that of the plug-in estimator in
the limit as P → 0 or 1, regardless of the prior.

2. For the Bayesian predictive distribution there is a matching
prior, i.e. one for which the second-order CPB of z̃P is 0.

3. However we can also achieve the same second-order proper-
ties directly, using the estimator z†P .

4. For any of these estimators of predictive quantiles, we have
an approximation for the expected length of a prediction in-
terval, and this can be used as a design criterion.

5. In the case of an estimate whose second-order CPB is 0,
we obtain a design criterion very similar to that of Zhu and
Stein, but adapted to a specific construction of a prediction
interval.
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