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Superstorm Sandy (www.guardian.co.uk; October 30, 2012)
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I Introduction

7



Concept of Extreme Event Attribution

• Observe some extreme weather event

• Run a large number of climate models under anthropogenic
forcings; measure weather variable corresponding to the ob-
served extreme event

• Repeat but under either natural forcings or using control
model runs

• Estimate P1: probability of extreme event under anthro-
pogenic scenario and P0: probability of extreme event under
natural or control scenario

• The fraction of attributable risk is

FAR = 1−
P0

P1

or just consider the risk ratio P1
P0

.
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A recent report of the NRC: 
 

 

Question: How will probabilities of extreme events 

change over the next ten years? 
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Statement of the Problem

• Find a statistically defensible strategy for estimating the FAR

or RR based on time series of observational or model data

• Characterize the uncertainty (e.g. through confidence or

Bayesian credible intervals)

• The objective is to provide portable R software that is appli-

cable to public databases

• Also: find ways of projecting extreme event probabilities into

the future

• We illustrate these issues with regard to three recent heat-

wave events: the European heatwave of 2003, the Russian

heatwave of 2010, the central USA heatwave of 2011.
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II Literature Review
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Stott, Stone and Allen (Nature, 2004) 

used the GPD plus bootstrapping to 

estimate the probability of an 

exceedance of 1.6K using both natural 

forcings (green curve shows pdf of 

estimated return period) and 

anthropogenic forcings (red curve).  

The results show an estimated 

probability of around 1/250 per year 

under anthropogenic forcing and 

around 1/1000 per year under natural 

forcing, for a risk ratio of 4 or a FAR of 

1-1/4=0.75. The bottom curve 

expresses the pdf of the estimated 

FAR. They concluded that there is at 

least a 90% chance that the FAR is >0.5 

(risk ratio >2). 
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Pall et al. (2011), nonparametric, very data-intensive 
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IIIWhy is Extreme Value

Modeling Hard?
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To provide some context for the results and modeling methods

to follow, we give some elementary theoretical calculations that

show why we cannot expect to get very precise results based on

small numbers of climate model runs.

Suppose we try to estimate the probability of an extreme events

as the proportion X/n from a set of n climate model runs where

X contain the event in question (this is essentially the technique

of Pall et al.).

Suppose X ∼ Bin(n, p) and we are interested in testing H0 : p =

p0 versus H1 : p = kp0 for some k > 1.

If we fix the size of the test to be 0.05 and the power to be 0.8,

how big a sample size n do we need?
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p0 k
2 3 4 5 6 7 8 9 10

0.05 169 52 27 16 14 12 7 6 5
0.025 339 104 54 43 28 24 14 13 11
0.01 905 301 137 110 71 60 53 33 29

0.0075 1207 402 223 146 94 81 71 44 39
0.005 1811 604 335 220 142 122 106 66 59

0.0025 3623 1209 671 440 285 244 213 133 119
0.001 9061 3024 1679 1102 713 611 534 332 299

0.00075 12082 4032 2239 1470 950 814 713 443 399
0.0005 18124 6049 3360 2205 1426 1222 1069 665 598

0.00025 36249 12099 6720 4411 2852 2445 2139 1330 1197
0.0001 90624 30250 16802 11029 7131 6112 5348 3327 2994
Sample size required to reject null hypothesis p = p0 against alternative

hypothesis p = kp0, k > 1 in a binomial experiment of size 0.05 and power
0.8
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Conclusion:

By a simple argument of counting threshold exceedances in re-

peated climate model runs, we would expect to need sample

sizes from a few tens up to several hundred to distinguish ex-

treme event probabilities that are typical in these discussions.

Most published climate model runs contain between 1 and 5

replications of the same model, so direct estimation is unlikely

to work.
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IV Data
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Climate model runs have been downloaded from the WCRP

CMIP3 Multi-Model Data website (http://esg.llnl.gov:8080/index.jsp)

Three kinds of model runs:

• Twentieth-century

• Pre-industrial control model runs (used a proxy for natural

forcing)

• Future projections (A2 scenario)

We also took observational data (5o × 5o gridded monthly tem-

perature anomalies) from the website of the Climate Research

Unit of the University of East Anglia (www.cru.uea.ac.uk — Had-

CRUT3v dataset)
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Number Model Control runs 20C runs A2 runs
1 bccr bcm2 0 2 1 1
2 cccma cgcm3 1 10 5 5
3 cnrm cm3 5 1 1
4 csiro mk3 0 3 3 1
5 gfdl cm2 1 5 3 1
6 giss model e r 5 9 1
7 ingv echam4 1 1 1
8 inmcm3 0 3 1 1
9 ipsl cm4 7 1 1

10 miroc3 2 medres 5 3 3
11 mpi echam5 5 4 3
12 mri cgcm2 3 2a 3 5 5
13 ncar ccsm3 0 7 5 5
14 ukmo hadcm3 3 2 1

List of climate models, including numbers of runs available

under three scenarios
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We calculated summer (JJA) averages of temperature anomaly

for each of three regions:

• Europe — 10o W to 40o E, 30o—50o N

• Russia — 30o to 60o E, 45o—65o N

• Central USA — 90o to 105o W, 25o—45o N

Plots of the time series show both increasing and decreasing

trends

We also note a “scale mismatch” problem — the variances of

the observational and model time series are typically different,

meaning that we cannot expect to use the model data directly

to calculate extreme event probabilities for the osbervations
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Plot of three time series for 1900–2012, with fitted trend curves.
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VThe Generalized Extreme

Value Distribution (GEV)
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The Generalized Extreme Value
Distribution (GEV)

• Three-parameter distribution, derived as the general form of

limiting distribution for extreme values (Fisher-Tippett 1928,

Gnedenko 1943)

• µ, σ, ξ known as location, scale and shape parameters

• ξ > 0 represents long-tailed distribution, ξ < 0 short-tailed

Formula:

Pr{Y ≤ y} = exp

[
−
{

1 + ξ

(
y − µ
σ

)}−1/ξ

+

]
.
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• Peaks over threshold approach implies that the GEV can be

used generally to study the tail of a distribution: assume GEV

holds exactly above a threshold u and that values below u

are treated as left-censored

• Time trends by allowing µ, σ, ξ to depend on time

• Example: Allow µt = β0+
∑K
k=1 βkxkt where {xkt, k = 1, ...,K, t =

1, ..., T} are spline basis functions for the approximation of a

smooth trend from time 1 to T with K degrees of freedom

• Critical questions:

– Determination of threshold and K

– Estimating the probability of exceeding a high value such

as 2.3K
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VI Analysis of a Single Time

Series
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• GEV with trend fitted to three observational time series

• Threshold was chosen as fixed quantile — 75th, 80th or 85th

percentile

• AIC was used to help select the number of spline basis terms

K

• Estimate probability of extreme event by maximum likelihood

(MLE) or Bayesian method

• Repeat the same calculation with no spline terms

• Use full series or part?

• Examine sensitivity to threshold choice through plots of the

posterior densities.
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K Europe Russia Texas
Threshold 75% 80% 85% 0.75 0.8 0.85 0.75 0.8 0.85

2 97.9 87.7 67.5 149.8 131.2 110.4 146.6 131.3 108.8
3 75.7 68.5 60.5 145.8 135.4 112.7 142.6 125.0 105.5
4 76.1 66.2 44.9 148.1 137.8 113.8 144.6 126.8 103.6
5 74.1 64.6 54.6 147.0 134.1 121.2 144.1 126.5 104.9
6 74.2 74.3 61.6 146.8 133.6 113.1 143.8 125.5 106.1
7 77.9 75.2 59.8 146.6 135.1 114.0 133.4 126.4 106.8
8 86.2 77.4 65.9 148.0 137.1 122.1 138.9 128.4 108.1
9 86.8 74.6 67.1 149.4 138.7 113.3 148.6 130.6 110.2

10 88.7 94.8 54.2 150.8 140.4 125.1 128.2 122.9 105.7
11 90.6 73.4 73.5 153.1 142.6 125.7 144.2 127.8 110.5
12 79.1 98.6 59.3 152.8 140.8 126.4 135.1 119.7 105.8
13 95.3 79.6 59.1 156.1 144.2 127.4 136.2 116.9 104.2
14 77.5 78.6 54.6 157.5 142.4 128.7 138.9 121.8 107.9
15 97.6 85.5 77.9 157.2 143.1 129.5 136.8 122.5 109.6

AIC values for different values of K, at three different thresholds, for each
dataset of interest. In each column, the smallest three AIC values are

indicated in red, green and blue respectively.
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Dataset Endpoint K Threshold MLE Posterior Posterior Quantiles
Mean 0.05 0.5 0.95

Europe 2002 5 80% .021 .076 0 .057 .217
Europe 2012 5 80% .0027 .113 .031 .098 .246
Europe 2002 0 80% 0 .0004 0 0 .002
Europe 2012 0 80% .0044 .011 .001 .0081 .029
Russia 2009 6 80% .0013 .010 0 .004 .040
Russia 2012 5 80% .010 .058 .005 .039 .181
Russia 2009 0 80% 0 .0011 0 0 .0069
Russia 2012 0 80% .0019 .0067 .0003 .0043 .021

CentUSA 2010 13 80% .0007 .072 .003 .045 .234
CentUSA 2012 13 80% .089 .300 .058 .268 .653
CentUSA 2010 0 80% .0023 .0078 .00007 .0052 .024
CentUSA 2012 0 80% .005 .012 .001 .0092 .031

Results of extreme value analysis applied to observational datasets. For three
datasets (Europe, Russia, Central USA), different choices of the endpoint
of the analysis, spline degrees of freedom K, and threshold, we show the
maximum likelihood estimate (MLE) of the probability of the extreme event
of interest, as well as the posterior mean and three quantiles of the posterior
distribution.
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Posterior densities of the BLOTEP, with (top) and without (bot-
tom) spline-based trends. Based on 80% (solid curve), 75%
(dashed) and 85% (dot-dashed) thresholds.
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Summary So Far:

• Estimate extreme event probabilities by GEV with trends

• Bayesian posterior densities best way to describe uncertainty

• Two major disadvantages:

– No way to distinguish anthropogenic climate change ef-

fects from other short-term fluctations in the climate (El

Niños and other circulation-based events; the 1930s dust-

bowl in the US)

– No basis for projecting into the future

To go further, we need to find a way to combine observa-

tional and climate model data in a way that takes account

of the scale mismatch issue noted earlier. We now propose

a hierarchical modeling approach to do this.
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VII Hierarchical Models
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Hierarchical Model    

  
Controller 

M1,D1 

θ(0,0) θ(0,1) θ(0,M) θ(1,0) θ(1,1) θ(1,N) 

Y(0,1) Y(0,M) Y(obs) Y(1,1) Y(1,N) 

Ξ=0 Ξ=1 

Anthropogenic 

θ(1,1) .... 

Natural 

Natural Models Data Anthropogenic Models Data Observations 

M1,V1 
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Features of the Present Approach

• A “switching” variable Ξ deterines whether climate change
is natural or anthropogenic

• Conditional on Ξ = 0 or 1, define mean vector (M0 or M1)
and precision matrix (D0 or D1) for GEV parameters θ(i,j)

• Bottom level of hierarchy contains observational and model
data

• Normal-Wishart conjugate prior for (M0, D0) or (M1, D1) —
allows Gibbs updating

• Metropolis updating for GEV parameters

• Ultimately use posterior density for observation GEV param-
eters (θ(0,0) or θ(1,0)) to calculate extreme event probabilities

• A refinement — multiply the precision matrix for θ(0,0) or
θ(1,0) by ψ to allow non-exhangeability.
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VIII Results
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For each of the three time series, we calculate the binary log

risk ratio (BLORRAT) for the extreme event of interest, corre-

sponding to the European, Russian and Central USA heatwaves

of 2003, 2010 and 2011 respetively.

Compute posterior densities under variety of assumptions, in-

cluding varying ψ.
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Posterior densities of the BLORRAT. Solid curve for ψ = 1;

dashed for ψ = 4; dot-dashed for ψ = 1/4.
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Posterior Quantiles of the Risk Ratio

Series ψ Percentile of Posterior Density
5 25 50 75 95

Europe 2003 0.25 0.11 0.68 2.06 6.88 47.40
Europe 2003 1 0.06 0.49 1.78 7.03 77.69
Europe 2003 4 0.06 0.53 1.85 6.84 85.61
Europe 2012 0.25 0.17 0.64 1.54 3.66 13.71
Europe 2012 1 0.29 1.03 2.66 6.66 34.86
Europe 2012 4 0.80 2.91 7.14 20.46 159.48
Russia 2010 0.25 0.14 0.73 2.07 6.02 36.62
Russia 2010 1 0.16 0.95 2.89 9.00 68.17
Russia 2010 4 0.08 0.76 2.75 10.90 186.06

Central USA 2011 0.25 0.25 0.74 1.53 3.23 10.42
Central USA 2011 1 0.31 1.00 2.25 5.21 19.24
Central USA 2011 4 0.45 1.75 4.37 10.98 55.46
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We also calculate boxplots of the projected extreme event proba-

bilities up to 2040, and risk ratios based on those (from 20C+A2

model runs)
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for 2000–2040, for three regions and K = 6 or 10 DF in the
spline representation of trend.
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Posterior Densities for the Risk Ratio at Different Time Points
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IX Conclusions
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• For comparing extreme event probabilities for anthropogenic

versus control conditions in climate models, we typically find

estimated risk ratios of about 2, but with very wide credible

intervals

• These calculations remain problematic given the difficulty of

estimating extreme event probabilities as well as the scale

mismatch problem

• However, projections of extreme event probabilities into the

future show notable increases, especially for Europe

• We can also compare the risk ratios for current or future

event probabilities versus past probabilities (2000 used as

reference), and find much stronger evidence for change (but

still very wide BCIs)

47


