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Outline of Talk

Over the past several years but 2021 in particular, there have
been many extreme weather events

— Extreme heat in the north-west of US and Canada
— Flooding in Europe

— Wildfires throughout the US west

— Many others throughout the world

To what extent can we say that these events are ‘caused
by" climate change?

I will draw particular attention to a group calling themselves
World Weather Attribution (WWA) and their contributions
to the methodology of extreme event attribution

In particular, I want to draw attention to the uses this group
have made of extreme value theory, and suggest some alter-
native ways forward
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Hotter, faster, stronger: That isn't a tagline for the next blockbuster
superhero movie. This is what climate change is doing to many



Rapid attribution analysis of the
extraordinary heatwave on the Pacific Coast
of the US and Canada June 2021.
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Abstract

The last few years have seen an explosion of interest in extreme event attribution, the sci-
ence of estimating the influence of human activities or other factors on the probability and
other characteristics of an observed extreme weather or climate event. This is driven by

Discussion paper of concepts, May 2021
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Abstract. Over the last few years, methods have been developed to answer questions on the effect of global
warming on recent extreme events. Many “event attribution™ studies have now been performed, a sizeable frac-

Background on methodology, November 2020



Eight Steps to Attribution
(van Oldenborgh et al., 2021)

. Analysis trigger;

. Event definition;

. Observational trend analysis;
. Climate model evaluation:;

. Climate model analysis;

. Hazard Synthesis;

. Trends in vulnerability and exposure;

. Communication.



Analysis Trigger

e How do we decide when an event justifies an analysis?

— Criteria based on economic impacts would lead to undue
emphasis on rich countries

— Instead, used criteria based on number of deaths or size
of population affected

— Still numerous sources of selection bias, e.g. events of
decreasing frequency are unlikely to be analyzed (example:
flooding due to snowmelt in England, last occurred in

1947)



Event Definition

e How do we define the spatial and temporal scale of the event

Different (conflicting) goals, e.g. maximizing anthropogenic
contribution, maximizing return period, finding an index
that emphasizes impacts on humans and ecology

Fixed boundary conditions? (e.g. high EIl Niho)

Events may be defined by a combination of factors, e.q.
impact of a flood may be greater if there was previous
heavy rainfall or snowmelt

Different meteorological variables (e.g. wet bulb temper-
ature to emphasize effect of heatwave on human health)

Sources of data (e.g. remote sensing versus station data)

The most extreme event over a large region will have
different statistics from an extreme event at a specific
location (example of Hurricane Harvey)



Observational Trend Analysis

e Analyzing data for a trend in extreme values

— Fit Generalized Extreme Value (GEV) distribution to an-
nual maxima or Generalized Pareto distribution (GPD) to
exceedances over a threshold

— Account for trends by conditioning on global mean surface
temperature (GMST)

— Sometimes this analysis shows events that have effectively
zero probability without a trend (example of temperature
trends in De Bilt, Netherlands)
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Fig.2 a,c Highest daily mean temperature of the year at De Bilt, the Netherlands (homogenised), fitted to a

GEV that shifts with the 4-year smoothed GMST. a As a function of GMST and ¢ in the climates of 1900 and
2018. b,d The same for the highest 3-day averaged precipitation along the US Gulf Coast fitted to a GEV that
scales with 4-year smoothed GMST. From climexp.knmi.nl, (b,d) also from van Oldenborgh et al. (2017)

From van Oldenborgh et al.

(2021)
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Climate Model Evaluation

e [ he intention is to select a climate model that can represent
trends in the defined extreme event

— Is the model capable in principle of representing the ex-
treme events of interest?

— Extreme value analysis with model data should give results
comparable to results with observational data
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Climate Model Analysis

e Basic idea is to run the model twice, once under anthro-
pogenic forcings and a second time under natural forcings

e Alternative: use transient climate experiments and analyze
same way as observational data

e Framing of the problem may still affect the results (e.g.
whether to impose boundary conditions)
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Hazard Synthesis

e Combining results from observational data and model exper-
iments into a single attribution statement

e Sometimes model and observation results are in conflict!
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Analysis of Trends in Vulnerability and Exposure

e EXposure: maybe more people are exposed to a climate haz-
ard than before

e Vulnerability: maybe a population or a community is more
susceptible to the damaging effects of a meteorological event
than previously

e Example: an analysis of the 2014-15 drought in Sad Paulo
suggested that the water scarcity was due to population in-
crease not climate change
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Communication

e Different types of communication for different users, e.g.
general public, policymakers, scientific community
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Methods of Extreme Value Trend Analysis

Good background references: Coles (2001), Gilleland and
Katz (2016) for software

Generalized Extreme Value distribution (GEV): Pr{Y <y} =

_oN—1/¢
exp{— (1+€%55) /
shape parameters and Y is typically an annual maximum

} where u, o, £ are |location, scale and

Generalized Pareto distribution (GPD): Pr{Yy < y} = 1 —
—1
(1 —|—§%)+ /¢ where ¢, £ are scale and shape parameters and

Y is typically an exceedance over a high threshold

Any of u, o, 1, £ may also depend on covariates (e.g. the
GMST)

Fitting typically by maximum likelihood though alternative
methods have also been considered at different times (e.g.
L-moments method, Bayesian analyses)
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WWA Analysis of the Pacific Northwest
Heatwave

Main findings

e Based on observations and modeling, the occurrence of a heatwave with
maximum daily temperatures (TXX) as observed in the area 45-52 °N, 119-123
°W, was virtually impossible without human-caused climate change.

e The observed temperatures were so extreme that they lie far outside the range of
historically observed temperatures. This makes it hard to quantify with
confidence how rare the even’t was. In the most realistic statistical analysis the
event is estimated to be about a 1 in 1000 year event in today’s climate.
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e There are two possible sources of this extreme jump in peak temperatures. The
first is that this is a very low probability event, even in the current climate which
already includes about 1.2°C of global warming -- the statistical equivalent of
really bad luck, albeit aggravated by climate change. The second option is that
nonlinear interactions in the climate have substantially increased the probability
of such extreme heat, much beyond the gradual increase in heat extremes that
has been observed up to now. We need to investigate the second possibility
further, although we note the climate models do not show it. All numbers below
assume that the heatwave was a very low probability event that was not caused
by new nonlinearities.

e With this assumption and combining the results from the analysis of climate
models and weather observations, an event, defined as daily maximum
temperatures (TXXx) in the heatwave region, as rare as 1 in a 1000 years would
have been at least 150 times rarer without human-induced climate change.

e Also, this heatwave was about 2°C hotter than it would have been if it had
occurred at the beginning of the industrial revolution (when global mean
temperatures were 1.2°C cooler than today).

e Looking into the future, in a world with 2°C of global warming (0.8°C warmer than
today which at current emission levels would be reached as early as the 2040s ),
this event would have been another degree hotter. An event like this -- currently
estimated to occur only once every 1000 years, would occur roughly every 5 to
10 years in that future world with 2°C of global warming.
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Smmary of Their Method

Data on TXx (annual max daily temperature) over 45—-52°N,
119—-123°W

Model extremes as a function of GMST (GEV distribution)
pt = Bo + L1GMSTy, oy =0, & =¢§

Compare 2021 with late nineteenth century (GMST 1.2°C
lower than 2021) or projected future events (GMST 0.8°C
higher than 2021)
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How Extreme was Hurricane Harvey?

Hurricane Harvey hit the Houston area at the end of August
2017

Very excessive precipitations led to major flooding

Meteorologically, associated with a stalling of the storm sys-
tem just off the Gulf coast, but recent work by Kossin and
others has suggested such events are becoming more com-
mon overall

Statistically, questions about (a) just how extreme an event
this was, (b) whether such events will become more common
in the future
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Photo Credits: NASA, CNN, Wikipedia, National Geographic
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Scientific questions

. How extreme was this event?

e May be characterized as a once in N years event — but
what is N7

e \What is the uncertainty of such a statement?

. To what extent can the event be "“attributed’ to human
influence?

. What are the projected probabilities of a similar event in the
future?

26



Other references on Hurricane Harvey:

e Van Oldenborgh et al, Environmental Research Letters, 2017

— GEV applied to precipitation data from both observations
and models, used global temperatures as a covariate

e Risser and Wehner, GRL, 2017

— GEV applied to annual max 7-day precipitations, used
Nino 3.4 and global CO» as covariates, no climate models

e Emanuel, PNAS, 2017

— Not a statistical approach, used atmospheric model simu-
lations under present-day and projected future conditions

e and others...
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Analysis from a Single Station
(Hammerling et al., 2019)

e Precipitation data from Houston Hobby airport

e For each year, calculate max 7-day precipitation from June-
November

e Also, mean Gulf of Mexico SST for year ending June 30

e Plotting the data suggests

(a) Steady increase in max precips. over ~70 years, but Har-
vey a particular outlier

(b) SSTs have also risen slowly with 2016-7 largest in history

(c) Even excluding Harvey, there appears to be a positive re-
lationship between the two
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Statistical Methodology

e Annual maxima follow GEV:

_ —1/¢
o)L )
Tt +

e Assume n; and log 7 are linear functions of SST; (Gulf of
Mexico annual mean SST in year t) and CO2; (global mean
CO» in year t).

Pr{Y; <y} = exp

e AIC chooses model:
Mt 01 4 04551 + 05C 02,
log T = 92 + 96SSTt,
§ 03.
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Parameter Estimates

Parameter | Estimate | Standard error | t-statistic | p-value
01 4.70 0.29 16.22 0.00
0> 0.56 0.13 4.25 0.00
03 0.15 0.09 1.64 0.10
04 3.06 1.49 2.06 0.04
Ox 1.95 0.82 2.36 0.018
O6 1.24 0.50 2.48 0.013
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Climate Model Projections

Downloaded climate data from four climate models (part of
CMIP5 archive)

Computed GoM SSTs from three scenarios:

— Historical data, all-forcings model

— Historical data, natural forcings only

— Future data (RCP8.5 scenario)

Unfortunately, the historical data did not look much like the
observational data

To correct for this, a secondary detection and attribution
analysis was performed on the SST data alone (regress ob-
served SSTs on model values — either historical or natural)

Hence, future projections...
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Exceedance Probability x 1000

(a) Probability Curves

(b) Trends Projected from Models (c) Trends Projected to 2080

(a) Estimated probability of a Harvey-sized event, as a function
of SST, using EVT (66% confidence bands in green)

(b) Trends in SST from 4 climate models, under natural and
natural4+anthropogenic forcing

(c) Projected trends in SST through 2080, under “business as
usual” emissions scenario
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Relative RIisks

Model Present Future
Lower | Mid | Upper || Lower | Mid | Upper
CCsSM4 1.5 2.0 3.2 9.0 26.2 133
GISS-E2-R 1.8 2.5 4.8 13.5 | 43.5 | 244

HadGEM2-ES 1.6 2.1 3.5 23.6 | 73.3 | 415
IPSL-CM5A-LR 1.5 2.0 3.3 10.8 | 33.8 | 186
Combined 1.7 2.4 4.4 14.3 | 46.0 | 254

Relative risks. The columns labelled “Present” refer to relative
risks for the 2017 event under an all-forcings scenario versus
a natural-forcings scenario, computed under four climate mod-
els and with all four models combined. Lower, mid and upper
bounds correspond to the 17th, 50th and 83rd percentiles of the
posterior distribution. The columns labelled “Future” are relative
risks for such an event in 2080 against 2017; same conventions
regarding climate models and percentiles.
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How Can We Extend This to a Spatial Field?

e Full “detection and attribution” not so far attempted, but
this follows Russell et al. (Environmetrics, 2020)

e Precipitation data, 326 stations in 6 states bordering Gulf

e Model ni(s), m(s), &(s) in year t at station s:

nt(s) 01(s) + 02(s)SST,
log 7(s) 03(s) + 04(s)S ST,
&(s) = 0s(s),
e O(s) = ( 01(s) ... O5(s) )T modeled as a 5-dim spatial pro-

cess based on co-regionalization (Wackernagel and many
others)

e [ wo-stage estimation procedure allows also for spatial cor-
relation among individual measurements
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fall event exceeds 70 cm. under three scenarios: low SST (top
left); high SST (top right); 2017 SST (bottom). From Russell
et al. (2020)
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Summary

There is much evidence on the role of climate change in in-
creasing the probability and/or the severity of extreme events

Many issues related to selection of events to analyze, defini-
tions of a meteorological variable, consistency between obser-
vations and climate models, and interpretation of the results

Many new possibilities for statistics — recent advances in ex-
treme value theory include asymptotic dependence/independence
models for multivariate events, spatial extremes and many
others

CMIP®6 is projected to generate about 20 PB of data

Many possibilities for ambitious data sciencel!
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Future Event

IMSI workshop on Climate and Weather Extremes, October 3-7,
2022

https://www.imsi.institute/

Organizers are Bo Li, Tiffany Shaw and Richard Smith
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