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PREFACE

These notes have been prepared in conjunction with the course Statistics 133, which
I taught in Spring 1999. They cover some of the standard theory and applications of time
series analysis, beginning with basic theory about stationary processes, through the theory
and applications of ARIMA models and spectral analysis, and leading up to an overview
of some of the modern applications of state space modeling in areas such as financial
time series. The notes draw on a number of standard references in the field, in particular
Brockwell and Davis (1990), which was used as the official text for the course. I have also
tried to emphasize computational applications in SPlus. Earlier versions of the notes have
been used in courses at Imperial College, Surrey University and Cambridge University.

Beginning with the 2000-2001 academic year, Statistics 133 is to become Statistics
185 with the new name “Time Series and Multivariate Analysis”. A separate set of course
notes is available for the “Multivariate Analysis” section of Statistics 133.

Richard Smith
Chapel Hill
May 1999
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1. INTRODUCTION TO TIME SERIES ANALYSIS
1.1 Introduction

Time series analysis refers to the branch of statistics where observations are collected
sequentially in time, usually but not necessarily at equally-spaced time points, and the
analysis relies at least in part on understanding or exploiting the dependence among the
observations. The areas of application these days cover almost any area where statistics is
applied, but some of the main ones are

e Fconomics: Economic indicators such as unemployment statistics or the retail prices
index, and financial series such as currency exchange rates or stock prices, are all examples
of time series.

e Engineering: Many areas of engineering and signal processing involve series which
are sampled at frequent time points and therefore form a time series.

e Environmental Statistics: A growing area of application in view of widespread of
interest in such topics as global climate change, which involves interpreting time series of
temprature or rainfall, and such areas as pollution in the atmosphere, which involve time
series of air quality measurments,

e Medical Statistics: This is not generally regarded as one of the major areas of time
series application, but nevertheless it is common for some adjustment for serial correlation
to be needed in the context of medical statistics. Often this arises in the context of many
short time series, e.g. data are independent from one patient to the next, but there is a
series of measurements on each patient, and these are correlated in time. Such problems
are also referred to as longitudinal data analysis. This sort of problem, however, involves
somewhat different considerations from the ones that will mostly be addressed in these
notes.

When we have a time series, what sorts of questions do we want to answer about it?
Some of the main ones are:

e Analysis: Find a model to describe the time dependence in the data. This is usually
a first step to any of the other parts of the subject, but sometimes it is the only step. For
example, we might want to know whether the pattern on unemployment statistics in the
U.S.A. is different from that in, say, Japan. One could try to answer that question by
fitting a model to each series, and then contrasting the two models.

eForecasting: Given a finite sample from the series, forecast the next value or the next
several values. Obviously, many applications are of this form.

eControl: Of important in many engineering and industrial applications, after making
a forecast of the series we might consider how to adjust various control parameters to make
the series fit closer to a target.



e Adjustment: This refers to a somewhat different kind of problem, where the time
series analysis is not the main purpose of the analysis, but where time series correlations
may have a significant influence on the analysis being performed. The simplest case arises
with the usual linear model,

Yt :$$5+77t; (1.1)

in which y; is a scalar observation at time ¢, x; is a vector of observed covariates, 3 a
vector of unknown parameters, and 7, a random disturbance or errors. The usual linear
model assumes the {n;} are uncorrelated with mean 0 and common variance o2, in which
case the least squares estimator B has variance (X7 X)~102, X being the matrix formed
from all the regressors {z;}. Suppose, however, the errors {n;} form a time series of
correlated observations. If we knew the correlations, we might apply generalized least
squares (GLS) instead of the usual ordinary least squares (OLS). If we do not know the
correlations, however, we may decide to do a time series analysis to find something out
about them. Typically, the OLS B behaves well as a point estimator even when there is
substantial correlation in the data, but the variance-covariance matrix is quite different
from (XTX)71o2. Therefore we may need to adjust the estimated variances to allow for
serial correlation.

1.2 Techniques of Time Series Analysis

From now on, we shall assume we are dealing with time series sampled at equally
spaced time points, where we may assume that the sampling interval is 1 time unit. An
important concept is that of a stationary process, which will be formally defined in Chapter
2. Loosely, it refers to a series in which all trends and other non-random effects have been
removed. Suppose we have a stationary series {X;, ¢t = 0,4+1,£2,...}. One of the most
common models is

p
Xt = Z ¢7‘Xt—r + €t, (12)
r=1

in which ¢1, ..., ¢, are fixed coefficients and {¢;} are independent (or uncorrelated) random
disturbances of mean 0 and constant variance 2. This is known as the autoregressive
process of order p, AR(p) for short.

A second example of a stationary time series model is

q
Xi = Zeset—sa (13)
s=0

the moving average process of order q, or MA(q). We usually assume 0y = 1 for identifia-
bility.

It is also possible to combine the autoregressive and moving average structures with
a model of form

p q
Xt — Z QbrXt—r = Z eset—m (14)
s=0

r=1



usually denoted ARMA (p, q).

In cases where the series is not initially stationary, one common device is to difference
the series, i.e. if the original series is {Y;}, form first-order differences

Xe=VY =Y, —Y 1.

If this series appears to be stationary then we look for an AR, MA or ARMA representation
for {X;}. We can iterate this process: the second-order differences are

X, =V, = V(VY,) = Y, - 2,1 + Yios

and so on: in general we can define a d’th order differencing operator V¢ for any positive
integer d. If
X, =V,

is a stationary processes fitting the ARMA (p, ¢) model, then the process for {Y;} is called
an integrated autoregressive moving average process, or ARIMA(p, d, q).

This scheme represents one of the main avenues towards time series analysis. However,
there are at least two quite different approaches:

Spectral Analysis. This refers to methods based on representing a stationary series as
a sum of sinusoidal terms via a discrete Fourier transform. Originally such methods were
mainly applied in engineering, where Fourier transform methods of signal processing have
long been widely accepted, but they are now much more widely used in standard statistical
analyses as well. Part of the reason for this has to do with the sampling properties of
spectral estimates, which facilitate general nonparametric methods of reconstructing the
correlations of the process.

The State Space Approach. The simplest state space model is

Xt =St + G (1.5)

Sy =aSi_1+ €
in which {S;} represents an unobserved sequence of states of the system, which here follow
an AR(1) process, and {X;} represent the observations which are perturbed by a further
sequence of (independent or uncorrelated) random variables {(;}. Models of this form
also arose originally in engineering applications, for which {S;} usually represents some
real physical quantity, but similar models are by now used as abstract models in a variety
of statistical applications. In the case of (5), it can be shown fairly easily that this is
equivalent to an ARMA(1,1) model for {X;}, so in this case nothing appears to be gained
by taking a state space approach, but more complicated models based on the state space
representation go well beyond what is possible within the ARMA framework. The Kalman
Filter is a widely used computational tool for analysing such models.
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The above methods — ARMA models for stationary processes, spectral analysis, and
state space models — represent the three main methods in current practice for the analysis
of linear time series models. However, there are many alternative approaches to time series
analysis which are gradually gaining acceptance. Some examples are

e Nonlinear models. For example, the AR model (1.2) may be generalized to
Xe = f(Xp—r, Xp—rt1, .0y Xo1) + € (1.6)

for a general nonlinear function f. The fitting of models of this nature is one of the most
complex issues in contemporary research in time series analysis. Amongst the applications
are a link with nonlinear dynamics and chaos theory: the fitting of a model of the form
of (1.6) may be one of the main steps in diagnosing chaotic behaviour in an observational
system.

e Irregularly spaced data. This is still a relatively unexplored area of time series
analysis, but such problems certainly arise in applications, and methods are being devised
to deal with them. Such series may, for example, be analyzed by viewing the observed series
as a discrete sample from some continuous-time stochastic process, constructing estimates
and predictors as appropriate.

e Generalized Linear Models with dependent errors. Although models such as the
ARMA models may not necessarily assume the data are normally distributed, it is clear
that they would not apply very well to, for example, data from a binomial or Poisson
distribution. Therefore, there is interest in developing time series models in this kind of
setting. The GLM structure is a natural starting point within which to think about such
issues.

e Bayesian analysis. Most current time series analysis is still based on the classical
(frequentist) approach to statistics. However, Bayesian methods of time series analysis
have gained much ground in recent years, see for example the book by West and Harrison
(1997). The state space approach to time series analysis is especially suitable for Bayesian
development and our own presentation of this approach will draw heavily on Bayesian
thinking.

e Long-range dependence. Sometimes series are stationary but with very slowly de-
caying correlations; this happens for instance in certain physical processes, and is widely
believed to be true in some econometric time series. There is a connection here with the
use of fractals as models for time series. One way of modelling such series is based on
ARIMA processes with a fractionally differencing coefficient dj; it is possible to define such
a thing in a way that makes sense! Other methods include a spectral approach.



2. STATIONARY STOCHASTIC PROCESSES
2.1 Definitions

Assume that we have a process {X;, t = 0,£1,£2,...;}. There are two widely used
definitions of stationarity.

Strict or Strong Stationarity is said to hold if, for any positive integer k, and k time
points tq, ..., tr and any integer lag h, we have that the vectors

(Xty, Xtgyooes Xt,)

and
(Xt1+h7 th-l—ha eeey th-l-h)

have the same joint distribution.

Weak or Wide-sense or Second-order Stationarity is said to hold if all the variances of
the process are finite and we have

COV(Xta Xt—l—h) = Yh,

the quantities p and ~, being independent of t.

Provided the variances are finite, it is clear that a strictly stationary process must
also be second-order stationary. However, the converse is not necessarily true. It is easy to
construct examples of random variables which agree in the first- and second-order moment
but not to any higher order.

However, in the case of a Gaussian process, the two concepts are equivalent. A process
{Xt, t =0,4+1,42,...} is said to be Gaussian if, for any k time points 1, ..., tx, the joint
distribution of X ,..., X;, has a multivariate normal distribution. This distribution is,
of course, completely determined once its mean vector and covariance matrix have been
specified. Therefore it follows at once that, if a Gaussian process satisfies the second-order
stationarity condition, it must also be strictly stationary.

Another useful definition is that of a linear process. A process {X;, t =0,£1,£2,...,}
is said to be linear if it has a representation of the form

oo
Xe=p+ Z Cr€t_p (2.2)
r=—o00

where p is a common mean, {c,} is a sequence of fixed constants and {¢;} are independent
random variables with mean 0 and common variance. We assume Y _ ¢ < oo to ensure that
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the variances of individual X; are finite. Such a process is necessarily strictly stationary;
if ¢, = 0 for all » < 0 it is said to be causal (i.e. in this case the process at time ¢ does not
depend on on future, as yet unobserved, values of ¢;). A Gaussian process necessarily has
a representation as a linear process with normal {¢;}, but we may also want to consider
non-Gaussian linear processes. The AR, MA and ARMA classes are all special cases of
causal linear processes.

2.2 Autocovariances, autocorrelations and spectral represen-
tations

For a weakly stationary process of mean 0, the autocovariance function is given by

Y = E{ X X¢yx}

It follows from the definition of weak stationarity that this does not depend on t. Also,
note that y_ = v for all k.

The autocorrelation function is

pp= 8 k=0,41,42,...

Yo

For any sequence of autocovariances {7y} generated by a stationary process, there
exists a function F' such that

Ve = / eFAAF(N) (2.3)
(—7!',7!']
where F' is the unique function on [, ] satisfying
(i) F(=m) =0,
(ii) F' is non-decreasing and right-continuous,

(iii) F' has increments symmetric about 0, meaning that for any 0 <a < b <=
we have

Then F' is called the spectral distribution function, so called because it has many of
the properties of a probability distribution function except for F'(w) = 1. Note that the
integral (2.3) is a Stieltjes integral reflecting the fact that F' may have discontinuities.

However, if F' is everywhere continuous and differentiable, with f(\) = dF(\)/dA,
then f is called the spectral density function and (2.3) may be simplified to

Vi = /_ " eFX f(N)dA. (2.4)

10



If Y |vk| < oo, then it can be shown that f always eists and is given by

Z Yre" + Z’Yk cos(Ak). (2.5)

k——oo

The interpretation of F is that, for any 0 < A\; < A2 < &, F(A\y) — F(A1) measures the
contribution to the total variability of the process within the frequency range A1 < A < As.

Examples
1. White noise: suppose o = 02 > 0 but v, = 0 for all k& # 0.

In this case it is immediately seen that

o2
fo) = o for all ),

™

which is independent of A\. The converse also holds, i.e. a process is white noise if and
only if its spectral density is constant.

2. Consider the process
X; = cos(wt + U)

where U is a random variable uniformly distributed on (-7, 7) and 0 < w < 7. We can
easily calculate

1 ™
E(X;) = py. cos(wt + u)du = 0,
T J—x
1 ™
E(X:Xi1k) = py. cos(wt + u) cos(wt + wk + u)du

T J—x
1 ™

=0 {cos(wk) + cos(2wt + wk + 2u) }du
T J—x

_ cos(wk)

=

Thus we see that {X;} is a stationary process. To find the spectral representation, we
want to represent the autocovariance in the form

cos(wk)
5 —/ o cos(Ak)dF ()).

Y =

A suitable F' is one that takes jumps of % at +w, i.e.

0 if —m <A< —w,
FA)=<1/4 if —w <A< w,
1/2 ifw<i<m.
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By the uniqueness of F', this is the spectral distribution function in this case. Thus,
a spectral distribution function which has discontinuities at +w, and is elsewhere flat,
corresponds to a single sinusoid which is perfectly predictable once one observation in the
series is known. Note that ) |yx| = oo in this case.

An obvious extension of this is to the case where F' is flat except for 2k discontinuities
at +wy, ftws, ..., wg. This corresponds to a process of the form

k
X; = Z a; cos(wjt -+ UJ) (26)

i=1

for constants a1, ..., ag, in which Uy, ..., Uy are independent random variables each uniformly
distributed on (—m, ).

The restriction to 0 < w < 7 in this example is in fact no restriction at all, for the
following reason. Suppose we have a process X; = cos(Q2t + U) for general Q2. Then we
may write Q = N7 + w for some integer N, w € [0,7). If N is even then cos(Q2 + U) =
cos(wt + U) for any integer ¢, so the frequencies w and ) are indistinguishable, or to
use the conventional terminology in this situation, they are aliases. If N is odd, then
cos( + U) = cos(wt — 7t + U) = cos(nt — wt — U). But U has the same distribution as
—U so in this case the frequency 2 is aliased to m — w. Thus any frequency 2 is aliased to
some frequency in the interval [0, 7]. The upper bound 7 corresponds to a cycle of period
2 and is the highest frequency detectable with sampling at integral time periods; this is
sometimes called the Nyquist frequency. The same comment obviously applies to (2.6) in
which any £ frequencies €24, ..., {2 may be aliased to frequencies wq, ...,wy in the interval
[0, ].

3. The AR(1) process
Xt =1 Xe1 + €, (2.7)

in which {e;} is an uncorrelated sequence of random variables with mean 0 and common
mean o2, satisfies the relation

Var{X;} = ¢?Var{X;_1} + o2
so under stationarity, in which Var{X;} = 7o = 0% independently of ¢, we have

1

Note that for (2.8) to make sense we require |¢1| < 1. This is the stationarity condition
for an AR(1) process: without this condition the process tends to grow forever and so does
not have a stationary distribution. (If ¢; = +1 then the process is a random walk, which
is a recurrent process but does not have a stationary distribution.) We shall see later that
all AR processes require some condition of this nature.

12



Now for the model (2.7) satisfying the stationarity condition |¢;| < 1, and for k£ > 0,

we have
Tk = E{XtXt—k}

= 01 B{X; 1 Xk} + E{e X1}
= P1Vk-1-

Since we also have y_j = v, we deduce

k
Y& = lll’)’o, -0 < k < oo.

Direct application of (2.5) then leads to

T = i g eos AT #0) ~ 7(1= 21 cos AT 3)

Fig 2.1: Plot of AR(1) spectral density
phi_1=0.6 phi_1=-0.6
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Fig 2.1 shows plots of f(\) for ¢; = £0.6. In the case ¢; > 0, the power is concentrated
at low frequencies, i.e. corresponding to gradual long-range fluctuations. For ¢; < 0 the
power is concentrated at high frequencies, which reflects the fact that such a process tends

to oscillate.
2.3 The Wold decomposition

In general it is possible for write the spectral distribution function F' in the form

13



where Fj is absolutely continuous and F5 is a purely discontinuous spectral distribution
function. Corresponding to this is a decomposition of the process

into uncorrelated processes U and V in which U has spectral d.f. F; and V has spectral
d.f. Fs.

As we saw in (2.6), a purely discontinuous spectral distribution function with finitely
many jumps corresponds to a mixture of sinusoids, which is a purely deterministic and
predictable process. The general result is given by the following:

Theorem. Suppose F' = F; + F5 as in (2.10) and suppose

/ log F{(A)d\ > —cc. (2.12)

—T

Then the decomposition of X into uncorrelated processes U and V as in (2.11) exists, and
moreover we have

(1) Uy = 3272, crér—p with {e,} uncorrelated random variables of mean 0 and common
variance; without loss of generality we may take co = 1, and we also require Y ¢ < oo,

(ii) V is a deterministic process, i.e. if we know V; for all s < ¢ then we can predict
V; perfectly.

The sum in (i) is defined in the mean squared sense, i.e.
R 2
Jim E (Ut - ZocTet_T> = 0.
r=

2.4 Non-Negative Definiteness

One natural question to ask is: given an arbitrary sequence {vx, k¥ > 0}, under what
conditions is it the autocovariance function of some stationary process?

It is easily seen that there must be some restrictions, because for any finite sequence
of constants {ci, ..., cr} we have

T
0 S Var (Z CtXt)
t=1

T
Z cscy Cov(Xs, Xy) (2.13)
1

I
E

®
Il
—
5~
I

I
M=
M=

CsCtY|t—s|-

@
Il
—
o+
I

1
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If (2.13) holds for all sequences {ci, ..., cr} then we say that {7x} is non-negative definite.
If the last expression is strictly positive except when ¢; = ... = ¢p = 0, then it is positive
definite. It turns out that non-negative definiteness is a necessary and sufficient condition
for {~r} to be the autocovariance function of some stationary process. (This result is
known as Bochner’s Theorem.)

How can we check non-negative definiteness of a given {v;} sequence? A sufficient
(and in fact necessary) condition is that the spectral density function defined by (2.5)
should be non-negative for all A\. For under this condition we have

YI)IIIED 3 Sy IO
s t s t

—T

= /7r {chsctei@—t)*}fu)d,\
- s t

Z CteitA

t

-/,

> 0.

FOdA

Thus, a very general method of constructing autocovariance functions is to take an
arbitrary non-negative f and transform it via (2.4).

2.5 Estimating autocovariances and spectral densities
So far, we have discussed autocovariances and spectral densities only as theoretical
constructs and have not given any indication about their estimation from data. We do

that here, and also discuss a related concept, the partial autocorrelation function.

Suppose we have data { Xy, ..., X7}. The usual estimate of vy, for k£ > 0 is given by

T—Fk
.1 _ -
w=T ;(Xt - X)( Xtk — X) (2.14)
where X is the sample mean
T
— 1
X=r ; X;.

Corresponding to this, we have estimates of the autocorrelations px = /70, given by

Vi
L 2.15
Yo ( )
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In (2.14), it might seem more natural to divide by T — k (rather than T') because the
sum is taken over ¢ — k terms, but this is not usually done, for two reasons: (a) using the
definition (2.14) ensures that the sample autocovariances are non-negative definite, which
is evidently a desirable property for them to have, (b) the estimate of r; in (2.15) often
has smaller mean squared error if defined in this way, than it would in the alternative way
with the divisor T' in (2.14) replaced by T — k.

One reason for calculating and plotting the autocovariances or autocorrelations is the
following easily verified fact: if {X;} is MA(q), then v, = 0 for |k| > ¢ and so plots of {7}
should show a sharp drop to near 0 after the ¢’th coefficient. This is therefore a diagnostic
for an MA(q) process. The corresponding diagnostic for an AP(p) process is based on a
different quantity, known as the partial autocorrelation function.

The partial autocorrelation of lag k is based on the least-squares regression of X; on
Xi_k,--y Xt—1. Formally, this is based on postulating the model

p
X; = Zaj,kXt_j +e€, t>k,
j=1

with €, independent of X;_j, ..., X;_1. Least squares estimates of {a;r, j = 1,...,k} are
obtained by minimization of

2
p

T
1
0']% = T Z Xt — Zaj,kXt_j . (216)
t=k+1 3

‘1

which is (almost) equivalent to solving the equations

k

Fe=Y_ajrij_e, 1<LZE, (2.17)
7j=1

and then calculating the mean sum of squares by substituting in (2.16). In practice, these
coefficients may be calculated recursively in k from the Levinson-Durbin recursion:

~

k—1 .

Vi = doj=1 Wk—1Vi—k
2

Ok—1

O,k =

bl

ajk = Qj k-1 — Ok kOk—j k-1, 1<J<k-—1,
2 2 2
of = 01 (1 — aj)- (2.18)

An obvious measure of how much the k’th order regression improves on that of order £ —1
is the drop in mean squared residual error, and (2.18) shows that this is determined by
the coefficient ay . We therefore call ay  the k’th order sample partial autocorrelation
coefficient. The corresponding population autocorrelation coefficient is, of course, obtained
from the same sequence of equations but with v, replacing 4y.
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In the case of a Gaussian process, there is an alternative interpretation in that ay j is
the conditional correlation of X; and X;_; given the intermediate values X;_gy1, ..., X¢—1.
For a non-Gaussian process, this interpretation is no longer valid because conditional
expectations are no longer, in general, given by simple linear combinations of the variables
being conditioned on.

For both Gaussian and non-Gaussian processes, however, the most important property
is the following: if the true process is AR(p), then the population partial autocorrelations
of order k > p are all 0, and therefore we would expect the sample partial autocorrelations
to drop off sharply after lag p.

For spectral densities, the simplest estimate is given by the periodogram

2

Ir(\) = 27% (2.19)

T
E Xte’i)\t
t—1

It will be seen in Chapter 5 that the periodogram for fixed X is an almost unbiased
estimator of f(\), provided the underlying process is stationary and its spectral density
exists, but that the sample periodogram is too rough to be a good estimator for most
practical purposes. Various operations on the periodogram, in particular smoothing and
tapering, will be introduced there, to improve on the raw periodogram as a spectral density
estimator.
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3. LINEAR FILTERS
3.1 Introduction

Suppose there are two processes X and Y related by

o0 o0
Y, = Z crXi—p, —00<t<oo where Z cf<oo,

r=—00 r=—00
and suppose their spectral densities are fx(A) and fy ().

We have

COV(Yt,Yt+k)=COV( o X, Y Cth+k—s)

r=—00 §=—00
o oo

- Z Z CrCsVk+4+r—s

r=—0o0 §=—00

r=—00 S=—00

7r . .
— / ezkA ‘2 :cTeer
-7

_ / " e (A)dA.

—T

2
fx(A)dA

Comparison of the last two equations shows that

fr0) = 0] fx(N)

(3.1)

(3.2)

where C(z) = ) ¢,2" is the generating function of the filter (we assume this is convergent

on |z| <1).

Equation (3.2) is the main result of this section, and is an important result in its own
right, because it allows us to calculate the effect of applying any linear filter to a given
process { X;}. For the development which follows, however, we shall mainly be concerned

with using this formula to understand better the properties of ARMA processes.

3.2 Application to AR processes
Define a backshift operator B by
BX; = X,_1, B?X,=B(BX;)=BX;_1 = X;_o,
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including the identity I X7 = B°X; = X;. Using this notation, we may formally write an

AR(p) process as
P
(I -y ¢,,BT) X, =€
r=1
or in even more compact notation as
$(B)X =

where ¢(z) is the generating function 1 — )" ¢,.2".

Applying (3.2) leads to the formula for the spectral density

) 2
6™ Ix (V) = £3) = 55
and hence )
o; 1
I = o e E

(3.3)

In principle we can now get all the covariances of X by Taylor expanding (3.3) in
powers of e** and using (2.5), but this requires one small assumption: that it is legitimate
to Taylor expand the function 1/¢(e**), or in other words that the radius of convergence
of 1/¢(z), as a function of the complex variable z, is greater than 1. Since ¢(z) is a

polynomial in z, this requires the following statement:

(*) All the zeros of the function ¢(z) lie outside the unit circle in the complex plane.

To see this, note that if the p complex zeros are at 21, ..., z,, then we can write

o -2)

#() =]

p
1=

and we can expand

(-2) =2(2)

if and only if |z;| > 1.

The relation (*) is called the stationarity condition for an AR(p) process. It defines
exactly what condition is needed on the coefficients {¢,., » = 1,...,p} to ensure that the

process is well-defined and stationary.
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For example, for an AR(1) process with ¢(z) = 1 — ¢12, we find immediately that
|z1]| = |1/¢1| > 1 is the stationarity condition. Also,

"= (1= dre?)(1 - dre™)
=1—¢1(e* +e )+ ¢}
=1—2¢1cos A+ ¢?

|p(e™)

which leads directly back to the formula (2.9) which we derived earlier. Note, however,
that the present calculation is much more direct than the one that led to (2.9), because in
(2.9) we found the spectral density only by first calculating the autocovariance function,
whereas here we have gone directly via (3.2). In general it is easier to use (3.2) to calculate
the spectral density and then use that to obtain autocovariances, rather than calculate the
autocovariances directly.

3.3 The MA process

The MA(q) process

q
Xi=¢+ Zeset—s

s=1

may similarly be written in operator notation as

q
Xt = (1 + ZQSBS) €t
s=1

or more compactly

X =6(B)e

where 6(z) is the generating function 14+ 7 bs2°. In this case the spectral density function

1S
2
—€

=2

In this case there is no need for any stationarity condition, since the process is stationary
whatever the coefficients {bs}, but there is nevertheless a difficulty requiring some restric-
tion on the coefficients. This is most easily seen in the case ¢ = 1. In that case we easily
calculate the autocovariances to be

|0(e™) 2. (3.4)

”ro=(1+9%)0€2, 71=910€2, v =0 for k> 1,

and hence the autocorrelations

2!

— =0 for k> 1. 3.5

pp=1, p1=

Now consider the identical process, but with 6; replaced by 1/6;. It is seen from (3.5)
that the autocorrelation function is unchanged by this transformation. In other words, the
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two process defined by 6, and 1/6; are identical for all practical purposes, so that the two
processes cannot be distinguished.

As a resolution of this difficulty, it is customary to impose the following identifiability
condition:

(**) All the zeros of the function 0(z) lie on or outside the unit circle in the complex
plane.

To see why this resolves the problem, suppose we write

0(z) = [[(z - %)

<
[y

Then

However, the identity

(@ ) () = (- L) (e 1)

Zj Zj

shows that there is no change in |0(e*")|, except for a constant, in replacing any z; by 1/z;.
Hence there is no loss of generality in assuming all |z;| > 1. If in fact we have |z;| > 1 for
all j, then the previous discussion of AR processes shows that we can invert the relation
between X; and €; to write ¢; as an infinite linear combination of the { X, s <t}. In this
slightly strengthened form, the relation (**) is also known as the invertibility relation on
the coefficients {6;, 1 < j < g¢}.

3.4 The ARMA process
The general ARMA(p, q) process may, in similar notation, be written in the form
#(B)X = 0(B)e (3.6)

where ¢(-) and 0(-) are the respective generating functions of the autoregressive and moving
average operators. By equating the spectral densities of the two sides of (3.6), we see that
the spectral density of X is given by

o2 CiX) |2
fx(A) = 2—6 : %- (3.7)

3

The conditions now required are
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(a) the stationarity condition on the coefficients {¢,, 1 < r < p},
(b) the identifiability condition on the coefficients {5, 1 < s < ¢},

(c) an additional identifiability condition: the generating functions ¢(-) and 6(-) should
not have any common zero.

The reason for condition (c) is that if ¢(-) and 6(-) have a common zero at z* say, then
it is possible to cancel a common factor (e — 2*)(e~* — z*) from both the numerator and
denominator of (3.7) and so reduce the model to simpler form.

As an example, consider the AR(1) model
X, = 0.8X;_1 + €. (3.8)
This model also satisfies the equation
X, 1= 0.8X; 9+ €1, (3.9)
so by subtracting, say 0.6 times (3.9) from (3.8), we obtain the model
X =14X;_1 —048X_o + € — 0.6€,_1

which looks like an ARMA(2,1) model, but of course it is in reality no different from
(3.8). In this case, the zeros of ¢(z) = 1 — 1.4z + 0.4822 are at 1/0.6 and 1/0.8, while
0(z) =1 — 0.6z is zero at z = 1/0.6, i.e. there is a common zero in the two generating
functions, and when this is removed the model indeed reduces to (3.8).

3.5 Calculating autocovariances of ARMA models

One application of these formulae is to the calculation of autocovariances of ARMA
models. This is useful, e.g. for deciding whether an estimated model provides a good fit
to the observed time series, and can also be useful as an initial diagnostic tool.

As an example, consider the ARMA(1,2) process with generating functions
$(z) =1— 1z, 0(2) =14 012+ 0,27

and |¢1]| < 1. In this case, the generating function of the Wold coefficients {c,, r > 0} is

0
= (146124 622%) Z Pt z"
r=0
= Zcrzr
r=0



so by equating coefficients of 2", we find

1 if r =0,
Cp = ¢1 + 01 lf T = 1, (310)
OL + 0197 + 02872 if r > 2.

To compute the covariances, we may use the fact that for k£ > 0,

oo
C _ 2
ov Cr€t—r, Cs€ttk—s | = CrCryk | O
T s r=0

so that

Yo

{1 + (1 +61)% + (¢1 + 011 + 62)° } o2

=4 2
"= {¢1 + 61 4 (¢1 + 61) (47 + 0101 + 62) +

(3 + 011 + 02) 93
1— ¢?

(43 + 011 + 62)%¢1 } o2 (3.11)

-2 «

} (97 + 011 + 02)" 202, k> 2.

Ve = {1 + (1 +01)p1 +

Note that an alternative approach which yields part of the answer is based on the following
formula, valid for &k > 2:

Cov{X; — $1 X1, Xe—r} = Cov{es + 01641 + baes_o, Xy} =0
from which we deduce

Ve = P11, k> 2. (3.12)

Although (3.12) does not yield the full solution (3.11), it may be the most useful part for
identification purposes, bacause if it appears from empirical examination of the sample
autocorrelations that they are geometrically decaying for k£ > 2, that could be taken as
providing strong evidence that the process is of ARMA(1,2) form.

23



4. FITTING ARIMA MODELS
The basic model is ARIMA(p, d, q):
$(B)V(B)*X = 0(B)e (4.1)

where ¢(-) and 6(-) are autoregressive and moving average operators, of orders p and ¢ re-
spectively, satisfying the stationarity and identifiability conditions of the previous chapter,
and V(B) = I — B is the differencing operator applied d times, where d is a non-negative
integer.

The process of fitting an ARIMA model, as it was made explicit by Box and Jenkins,
may be divided into three components,

e Identification
e Estimation
e Verification

which are iterated until a suitable model is identified.
4.1 Identification

This refers both to the initial preprocessing of the data to make the series stationary,
and also to the identification of suitable orders p and g for the ARMA components of the
model. The latter identification, however, is always preliminary, since there is plenty of
scope to adjust p and g on the basis of the models fitted.

A time series analysis should always begin with a preliminary plot of the data, as an
indication of gross features that should guide the analysis. For example, Fig. 4.1 shows a
raw time series plot of some electroencephalogram (EEG) data (courtesy of Professor Mike
West, Duke University): one would certainly not want to analyse this as a stationary time
series, even after differencing, without some initial preprocessing of the data! It might be
reasonable to fit ARIMA models to portions of the series.

The main tool for initial preprocessing is differencing, though other methods (e.g. re-
moval of deterministic components by linear regression) are perfectly acceptable, especially
when there is some well-defined physical reason for the presence of this component (e.g.
annual cycles in meteorological data).

As a guide to the amount of differencing (or other preprocessing) required, the main
tool is the autocorrelation function (a.c.f.). With a stationary series, this should decay
fairly rapidly to 0. If it fails to do so, then another layer of differencing is usually required.
In practice it is rare to go beyond d = 2: if the series fails to look stationary after two or at
most three applications of differencing, there is probably some more fundamental reason
that needs separate investigation.
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Fig. 4.1: Plot of EEG data
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Once the series is accepted as stationary, the next step is initial identification of p and
g- The main tools used for this are the a.c.f. and p.a.c.f. (partial autocorrelation function)
plots. In particular,

e An MA(q) series is identified from the property that all values of the a.c.f. after the
q’th are negligible,

e An AR(p) series is identified from the property that all values of the p.a.c.f. after
the p’th are negligible.

As a guide to what constitutes negligibility, it is worth noting that sample values of
the a.c.f. and p.a.c.f. very approximately have standard deviation around 1/ VT where T
is the length of the series. Thus a rule of thumb for treating these values as negligible is
based on two standard deviations, or 2/ VT. In S-Plus, lines at +2/ /T are shown on the
plot as an aid in this process.

4.2 Estimation

(a) AR processes
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The standard tool for autoregressive processes is to solve the Yule-Walker equations.
The are derived from the model relationship

p
Xt == Z¢th_j + €.
j=1

Taking the covariance of both sides with X;_;, we deduce, for k > 0,

p
Ve =D DiNi-h|- (4.2)

=1

If we consider equation (4.2) for 1 < k < p, we get a system of p equations in p unknowns
$1, ---, $p, which we can therefore solve in terms of 1, ...,v,. In practice, of course, we sub-
stitute the sample estimates of the autocovariances 91, ...,%;, to obtain sample estimates

ggl, ey quSp. Recall that this is operationally the same as calculating the partial autocorre-

lations; cf. (2.16)—(2.18). As there, one can use the estimated residual variance &12) as a

guide to the selection of appropriate order p. In particular, one can define an approximate
log likelihood
—2log L = T'log(67)

as the basis for a likelihood ratio test statistic. Another widely used measure is the Akaike
Information Criterion,

AIC = -2log L + 2k (4.3)

where £ = p, the number of unknown parameters in the model. The idea is to choose
the model (i.e. the value of p) which minimizes AIC. This is a widely used measure in
time series analysis, which has the advantage of being very convenient and quick to apply,
though as with any automatic procedure, it should not be used in a totally undiscriminating
way.

General ARMA processes

Now we turn to the general ARMA process. The idea here is based on numerical max-
imum likelihood estimation. However, most existing methods do not use exact maximum
likelihood but various approximations thereto.

The essential idea behind all maximum likelihood techniques for time series is the
prediction error decomposition. This is based on the idea that the joint density of any T
random variables X1, ..., X7 may be factored as

(X, Xr) = f(X0) [[ F(Xe|Xs, 1< s <t —1). (4.4)

t=2

Anticipating the notation of Chapter 6, suppose the predictive distribution of X; given
{Xs, s < t} is normal with mean X; and variance P;_1,1. Let us assume this applies to
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X1 as well, i.e. the initial distribution of X; is N(Xl, Py,1). Then (4.4) may be rewritten
as a log likelihood in the form

—2log L = —2log f(X4, ..., X7)
T
= Z {log27r + 10gPt_1,1 +

P
t=1 t=1,1

(X, — X,)? } (4.5)
In this, Xt, P;_1,1 and hence L are a function of the unknown parameters ¢4, ..., ¢p, 01, ..., 04
of the model, and maximum likelihood estimators may therefore be found by minimizing
(4.5) with respect to these parameters. This is carried out by a routine application of
numerical nonlinear minimization techniques, subject to the constraints on the parame-
ters due to the stationarity and identifiability conditions. Moreover, the second derivative
matrix of — log L, evaluated at the maximum likelihood estimator, is the observed informa-
tion matrix, and its inverse is an approximation to the variance-covariance matrix of the
estimators. In particular, we may obtain approximate standard errors for the parameters
from this matrix.

In practice the calculation is often simplified if we condition on the first m values of
the series, for some small m; in that case, the sum in (4.5) is taken over m+1 < ¢ < T.
For example, in an AR(p) process, for t > p we trivially have

p
o _ 2
Xi = E Gr Xt—r, Py_11 =0,

r=1

but it is not quite so easy to see how to compute these quantities for ¢ < p — this requires
some consideration of the stationary distribution of the process and not merely the succes-
sive conditional distributions. A similar simplification exists, if not quite so obviously, for
the general ARMA process. Therefore, in practice, the exact likelihood function is often
replaced by a conditional likelihood function. The main thing to watch here is that, in
comparing models with different numbers of parameters, it is important to use the same
value of m. S-Plus uses conditional likelihoods and allows the user to fix m.

For comparing different models, we may again define AIC by (4.3), where k is now
the total number of unknown parameters in the model, or else compare different models
directly by likelihood ratio tests.

For general ARMA models, there are by now a number of approaches to computing
the exact likelihood. Harvey and Phillips (1979) showed how to do this by rewriting the
model in state space form (Chapter 6 of the present notes), while Ansley (1979) solved
the problem directly via a Cholesky decomposition of the covariance matrix. Kohn and
Ansley (1985) generalized this to the case of regression with time series errors. The Kohn-
Ansley approach appears to be the most efficient when there is no missing data, but the
best approach when there is missing data is again based on the Kalman filter (Kohn and
Ansley 1986, Harvey 1989).
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4.3 Verification

The third step of the Box-Jenkins cycle is to confirm that the model in fact fits the
data. There are two basic techniques here:

e Overfitting: i.e. add extra parameters to the model and use likelihood ratio or ¢
tests to check that these are not significant,

e Residual analysis: calculate residuals from the fitted model and plot their residuals
and their a.c.f., p.a.c.f., spectral density estimates, etc., to check that they are consistent
with white noise.

A useful test statistic for the residuals is the Box-Pierce test (also called the portman-
teau test) which is based on

K
Q=T) ri
k=1

where K is bigger than p 4+ ¢ but much smaller than 7', and r is the k’th sample autocor-
relation of the residual series. If the fitted model is correct then

Q ~ Xk_p—q (approximately)

so we can construct a test based on this.
An alternative method is the Box-Ljung procedure which replaces @) by

K 2

Q:T(T+2)ZT_k.

k=1

This is recommended on the grounds that the distribution of Q is closer to its X%(_p_ a
limit than that of Q).

4.4 Seasonal models

The standard seasonal form of ARIMA model (sometimes called SARIMA) is ex-
pressed by the function

H(B)®(B)V(B)V 1 (B)PX = 0(B)O(B)e, (4.6)
where M is the (assumed known) period of the seasonality, Vas(B) = I — BM, and we
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have

q
0(B)=1+) 0;B7,
7j=1

Q
OB)=1+)Y ©;BM),

Jj=1

- (4.7)

P
®(B)=1-> ¢;BM.
j=1

The idea is to allow a seasonal differencing operator Vj;, autoregressive operator & and
moving average operator ©, of orders D, P and () respectively, each of which acts at lags
which are multiples of M, in addition to the usual operators V, ¢ and 6. The whole model
is sometimes called SARIMA((p, P, d, D, q, Q). Note that because of the basic algebra of the
operators, it does not matter if the order of the various operators in (4.6) is interchanged.

The main steps of identification, estimation and verification in seasonal models are the
same as in non-seasonal models. The main difference is that, in examining autocorrelations
for both the initial identification and the final verification, particular attention must be
paid to the values at or near multiples of the period M. For example, if the estimated
autocorrelation 4,y is large but 4xas is small for £ > 1, this might be taken as an indication
that Q = 1. The sample p.a.c.f. coefficients at multiples of M are used in a similar way
for the initial identification of P.

4.5 Periodically correlated processes

SARIMA models are by no means the last word on seasonal data. It should be noted
that any seasonal ARMA model is simply a special case of a nonseasonal ARMA model,
since both the autoregressive and moving average operators in (4.6) may be expanded out
as ordinary (nonseasonal) operators. These models do not allow for seasonal variability in
the covariances of the process, but in many practical applications, such variability may be
observed from simple plots of the variances and low-order autocorrelations as a function
of the time within the cycle (e.g. month of the year in the case of monthly data).

A simple example of a periodically correlated process is the PAR(1) model
Xiptam = 6™ Xiptym-1 + 0™ Ziprem, 1<m< M, k>0, (4.8)
in which there are 2M parameters ¢, ..., ¢(M) (1) 5(M) and {Z,} is a white noise
process with variance 1. The stationarity condition for this model is

M

IT 16" < 1. (4.9)

m=1
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A simple extension of this is to allow the {Z;} process in (4.8) to be itself a stationary
ARMA process, instead of just white noise. In that case the process is called PARMA.

One can of course think about more general extensions than this, e.g. allowing higher-
order PAR terms and also introducing periodic MA terms, but the PARMA model just
outlined is already quite complicated and probably good enough for most practical pur-
poses. A paper by Bloomfield, Hurd and Lund (1994) reviewed the theory of periodically
correlated processes with reference to a well-known series of stratospheric ozone data (from
Arosa, Switzerland), while Lund et al. (1995) developed further applications to ozone,
temperature and COs series.

We do not have the space here to get into a detailed discussion of periodically cor-
related models, but mention them as an alternative to the seasonal Box-Jenkins ap-
proach. In particular, if just the variances are seasonally dependent (i.e. we write
XeMam = OmZrym+m With {Z;} stationary), this may be detected by calculating sam-
ple standard deviations for each period m, and if these do appear to be non-constant,
dividing through by the estimated o, values before fitting a stationary model to {Z;}.

4.6 Forecasting in ARMA models

For the discussion of forecasting, it is convenient to strengthen the conditions slightly
so as to assume that the moving average operator #(B) is invertible, i.e. the zeros of the
corresponding polynomial 0(z) lie outside (not merely “on or outside”) the unit circle in
the complex plane.

Recall that under the usual stationarity and invertibility conditions, it is possible to
expand C(z) = 6(z)/¢(z) as a power series o ¢,z" to obtain the Wold representation
Xt =3 crét—p. Under invertibility, we can similarly expand

D(2) ‘MZ i d, 2"
r=0

and so rewrite the model as an infinite AR expansion

€t = ZdTXt_T' (410)
r=0

The advantage of (4.10) is that, given the infinite past of the series { X, s < t} we can
solve to obtain exactly {es, s < t}.

Now suppose we are interested in forecasting Xp from observations {X;, t < T'}.
Working with the Wold representation, we may consider forecasts of the form

oo
XT,k = ch,reT—r (4.11)
r=0
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which, in view of the preceding discussion, is something that may be calculated, at least
in theory.

Comparing (4.11) with the Wold representation for Xz, we see that

k-1
Xrik = Xop =D Créripr + Z Crtk — Ch,r)€T—r-
r=0 r=0

Hence
k-1 o)
E{(XT+k — XT,k)2} = {Z C% + Z Cr4+k — Ck,r }0'62
r=0 r=0

This expression may be minimized by setting
Crk = Cryk forallrT >0, k>0, (4.12)

and then gives rise to the mean squared prediction error

k—1
B{(X74x — X1t)°} = {203} az. (4.13)

r=0

This therefore defines our theoretical optimal predictor, and its mean squared error.
In practice, one does not usually go through the formality of constructing the Wold and
infinite AR representations in this way, Instead, there is an alternative recursive approach,
as follows. Define Xt,k to be the optimal predictor of X, given Xy, ..., Xp; for -T+1 <
k<0, X'T’k = Xr41x- We have the recursive relation

p q
Xrg =Y ¢ Xrhor+érsn+ Y Ostrib—s. (4.14)

r=1 s=1

For k < 0, (4.14) allows us to calculate estimates of the one-step prediction errors, & for
1 <t <T. Then we apply (4.14) with & > 0, defining é; = 0 for ¢t > T, to calculate the
forecasts. Note that the estimates {€;, 1 <t < T} are also the building blocks required
to calculate the likelihood function via the prediction error decomposition (4.5). This is
because

X110 = X¢ — &

The difficulty that remains is how to start off the recursion (4.14). There are two standard
solutions to that:

(a) the conditional approach, in which we assume X; = ¢, = 0 for all t < 0,

(b) the backcasting approach, in which we forecast the series in reverse direction to
determine estimates of Xy, X_1,..., as well as ¢g =0, e_1 = 0, etc.
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An alternative superior approach is, however, to recast the model in state space form
and apply the Kalman filter (Chapter 6).

Another point to note throughout this discussion is that the “mean squared prediction
errors” we have derived are based solely on the uncertainties of prediction: they do not
make any allowance for errors in model identification. An extended approach which also
takes into account the standard errors of the parameter estimates has been given by Ansley
and Kohn (1986).

4.7 An example

Our example is the Lake Huron data set from Brockwell and Davis (1991), p. 555.
Tthe data are 98 mean levels of Lake Huron in feet (relative to a fixed standard) for the
years 1875-1972. The following discussion illustrates the use of various S-Plus functions
on this data set.

Let us suppose the data file huron.dat is available, containing the observations in
sequence. To enter S-Plus, enter the command

Splus
You should receive a banner message looking something like

S-PLUS : Copyright (c) 1988, 1996 MathSoft, Inc.

S : Copyright AT&T.

Version 3.4 Release 1 for Sun SPARC, Sun0S 5.3 : 1996

Working data will be in /afs/isis.unc.edu/home/r/1/rls/.Data

>

The last symbol (>) is the S-Plus prompt. Note that the command to quit S-Plus is q().
A good command to enter next is

X110

which opens a graphics window. To read in the data from the file “huron.dat” into S-Plus,
where we shall use the data name “hur”, type

hur<-scan(file=’huron.dat’)
The command
tsplot (hur)

then produces a so-called time series plot of the data; see Fig. 4.2. The plot shows some
evidence of a decreasing trend over the first few years, but there is no visible reason why
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this could not be normal fluctuations of a stationary process, so for the time being at least,
we do not consider any differencing operation.

Fig. 4.2: Plot of Huron data
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A good thing to do next is to plot the a.c.f. and p.a.c.f. functions. The S-Plus
commands to do this are

acf (hur, 25)

and

acf (hur, 25, "par")

which produces the plots shown in Fig. 4.3 (the “25” here is the number of lags). The
a.c.f. plot lies within the approximate 95% confidence bands from lag 10 onwards, while

the p.a.c.f. plot shows insignificant values after lag 2. This suggests that the series is
stationary with an initial guess of an AR(2) model. In both cases there are some nearly
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Fig. 4.3: Autocorrelations of Huron data

34

A.C.F. Plot
||
)
5 10 15 20 25
Lag
P.A.C.F. Plot
‘ L L
\
5 10 15 20 25
Lag



significant correlations at higher lags but for the moment we ignore these — it is most likely
that they are spurious, but if not, they should still be present after fitting a model to the
data.

The next analysis tried used the S-Plus command
ar.out<-ar.yw(hur,order.max=10)

which creates an S-Plus data object “ar.out” by solving the Yule-Walker equations for
every order up to order.max. The program then uses AIC to select among these models.

If you type
ar.out
you will get the full output of the model fit, some of which is shown below:

$order:
[1] 2

$ar:

s 5 1

[,1]

[1,] 1.0519085
[2,] -0.2649543

$var.pred:
[,1]
[1,] 0.5094762

$aic:
[1] 118.3914795 5.1330872 0.0000000 0.3157349 2.2109680 3.8161316
[7] 5.7627869 6.9114075 8.7189941 10.7152405 8.6430969

and so on. You can get individual pieces of this by using the $ attachment to the data file
name, e.g. ar.out$order for the model order, ar.out$ar for the estimated parameters,
ar.out$aic for the individual AIC values, and so on.

The ar.yw procedure fits a series of AR models up to order 10 by the Yule-Walker
equations and chooses a “best” model by AIC. In this case the model selected is p = 2 and
the AIC values, relative to this minimum AIC, are 118.39 (corresponding to p = 0), 5.133
(p=1), 0.000 (p =2 — the minimum), 0.3157 (p = 3), 2.2110 (p = 4), etc. The AIC value
for p = 3 is small, suggesting that this is a reasonable competitor, but the others are much
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larger. The fitted parameters for p = 2 are ¢; = 1.0519, ¢ = —0.2650; it is apparently
not possible to obtain standard errors within this function.

The next step was to try a series of fits using the arima.mle function. To use this
properly, we first have to center the series about 0 by subtracting the overall sample mean

hur<-hur—-mean (hur)
and then a call of the form
hur .mod<-arima.mle(hur,n.cond=5,model=1ist (order=c(2,0,1)))

which requests an ARIMA model fitted to the data set hur, where the coefficients following
order= are the orders p,d and ¢q. Thus in this example p = 2,d = 0,q = 1. The option
n.cond=5 fixed the number of initial variables to condition on (m in the discussion following
(4.5) above) is set to be 5 — as mentioned earlier, it is important for comparison of different
models that this value should be the same for all models. It is also possible to define initial
values of the parameters by using the ar= and ma= options.

The S-Plus analysis gives, amongst other things, the estimated model parameters
and their variance-covariance matrix, and the values of loglik (=-2 log L) and AIC.
There is also an indicator of whether or not the iteration has converged. For the following
analysis, the strategy followed has been to start with the AR(1) and MA(1) models and
add parameters until it appears from the loglik and AIC values that the fit cannot be
improved. An important preliminary is to subtract the sample mean from all data points.
This analysis was repeated with first differenced data (d = 1) to gain some indication of
whether differencing would improve the model fit. The results are given in Table 4.1.

It should be noted that some models have an F' in the “converged” column, indicating
that no convergence has been achieved. In some cases, this is an indication of bad starting
values, and the fit should be repeated using the ar= and ma= options to try different values
of the starting parameters. The other reason why the algorithm may fail to converge is
because it may hit the boundary contraints imposed by the stationarity and identifiability
conditions. That should probably be taken as a warning of a poor choice of model. In the
above case, where the algorithm fails to converge, it would appear that this is the reason.
For instance, with the ARMA(2,1) model, the final parameters are b1 = 0.0894, ¢y =

0.5762, 0, = —0.9936, the last parameter being very close to the boundary at 6 = 1.

It appears from this table that the best model is ARMA(1,1) to the undifferenced
data. This narrowly inproves on the AR(2) model identified earlier. Moreover, none of

the differenced models improves on this, implying that differencing is unnecessary in this
example. The ARMA(1,1) parameter fits are ¢; = 0.7386, 6; = —0.3485 and the variance-
covariance matrix is obtained as

0.006534 0.004568
0.004568 0.012639
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so that the standard errors for q31 and 6, are respectively 0.081 and 0.112.

Table 4.1: Model fits to Huron data

Order loglik AIC Converged
(1,0,0) 198.2686 200.2686 T
(0,0,1) 231.1679 233.1679 T
(2,0,0) 191.8183 195.8183 T
(1,0,1) 190.4097 194.4097 T
(2,0,1) 187.5088 193.5088 F
(1,0,2) 190.4012 196.4012 T
(3,0,0) 189.8072 195.8072 T
(3,0,1) 185.7669 193.7669 F
(1,1,0) 201.5242 203.5242 T
(0,1,1) 199.7084 201.7084 T
(1,1,1) 195.5389 199.5389 F
(0,1,2) 196.5308 200.5308 T
(2,1,0) 195.7203 199.7203 T

Finally, the arima.diag command was applied to the output from arima.mle for the
ARMA(1,1) model. The result is Fig. 4.4. This shows, respectively, the standardized
residuals from the fitted mode, the a.c.f. of those residuals, and the P-values of the Box-
Pierce test for different values of K. The latter are of concern if they go below 0.05 (marked
on the plot). It would appear that the model is a good fit.
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Fig. 4.4: Huron model diagnostics
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5. ESTIMATING SPECTRAL DENSITIES
5.1 Regression on sinusoidal components

The simplest form of spectral analysis consists of regression on a periodic component:

Y; = Acoswt+ Bsinwt+C +¢, 1<t<T,

in which {e;} are uncorrelated with mean 0 and common variance o2.

0 < w < 7 (recall the discussion of aliasing in Chapter 2).

We may assume

We may rewrite this model in standard vector-matrix notation
Y=Xp+e¢

in which Y = (Y1, ..., Y7)T is the vector of observations, € = (e, ..., er) the vector of errors,
B=(A B C)T and X is the T x 3 matrix

Ccos w sinw 1
cos2w sin2w 1

cosTw sinTw 1

Then the estimates are given by ordinary least squares as

~

A > Y;coswt
B|=X"X)"'X"Y = (X"X)"' | Y Y;sinwt
C > Y

and they are unbiased with a covariance matrix is given by the usual formula (X7 X)~1o2.
If the {e;} are independent normal, then the estimates are also independent and normally

distributed.

These formulae take a much simpler form if w is one of the Fourier frequencies, de-
fined by w; = 2mj/T for some integer j between 0 and 7'/2. We may note the following
elementary trigonometric identities:

T T
Zcoswjt = Zsinwjt =0 (j#0),
t=1 t=1

T L whenj=k (#0or %),
Zcoswjt coswit =q T when j=Fk=0or %,
t=1 0 when j #k,

T

T . T

Zsinwjt sinwyt = {5 when j fk (#0or 3),
1 0  otherwise

T
Z cosw;t sinwgt =0  for all j, k.

t=1
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For simplicity we do not consider the cases j = 0, j = T'/2, which produce similar but
slightly different formulae. For any other Fourier frequency w; we have

T 0 o0
X'x=10 T o
0o 0 T
We then have 9
A:?Zthoswjt,
A2
B:?ZYtsmet,
A 1
C=Y=2> Y,

and these are uncorrelated estimates with variances 202/T, 20%/T, 02 /T, respectively.

A suitable way of testing the significance of the sinusoidal component with frequency
wj is the reduction in RSS in the above regression,

RT(L:Jj) = —(A2 + BQ).

If the {¢} are independent normal, then it follows that A and B are also independent
normal each with variance 202 /T, so under the null hypothesis A = B = 0 we find that

Ry (wj) 2

2 ~ X2

g

or equivalently that Ry (w;)/(202) has an exponential distribution with mean 1.

The above theory is easily extended to simultaneous estimation of several periodic
components. In particular, if we consider estimation of sinusoidal terms at k£ Fourier
frequencies wj,, ..., w;,, the corresponding columns of the X matrix are orthogonal. This
means that the point estimates of the coefficients are the same when all £ components
are estimated simultaneously as when they are estimated one at a time, and also that the
parameter estimates, and hence the R7 statistics, are uncorrelated.

Under the null hypothesis that all the A and B coefficients are 0, we have the following
result:

(*) The k test normalized statistics Ry (wj,)/(202), ..., Rr(w;, )/(202) are independent
exponentially distributed random variables each with mean 1.

This is an exact result for all 7' if the {¢;} are independent normal. It is also valid
as an approximation for large T if the {¢;} are independent non-normal. This is because
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the Central Limit Theorem guarantees that the parameter estimates are approximately
independent normal for large T'.

5.2 The periodogram.

The foregoing discussion turns out to be very useful in studying some of the funda-
mental properties of the periodogram. Recall that the periodogram was defined in (2.19),
where it was stated (without any proof) that it is an approximately unbiased estimator
of the spectral density f. In this section we shall provide an informal proof of this, and
derive some related statistical properties along the way.

In terms of the Ry (w) statistics defined above, the periodogram is

_ Rr(w)
4

By the property (*), if the process if white noise then the Rr(w;) at Fourier frequen-
cies {wj, 1 < j < T/2} are independent exponentially distributed with common mean
02/(2m) = f(w;). This result is exact if the {¢;} are independent normal, and approxi-
mate for large T if they are independent non-normal.

IT(W)

The general result is the following:

Theorem. Suppose Y; = >"°C  ¢y€;—, is a linear process, with independent {e;} having
mean 0 and common variance o2. Suppose this process is stationary with a spectral density

2 oo

J@) = ICE)P. (€)=Y e

™
r=0

Then the periodogram ordinates {Ir(w;), 1 < j < T'/2}, are approximately independent
and exponentially distributed, with means {f(w;), 1 <j < T/2}.

Heuristic proof. Let us write

1 T 1 T o
Z Y, ezwt — Z cret—reZWt
v2nT = VerT =50
1 00 T
— Z Crezwr Z € ezw(t—r)
2T 155 t=1
1 00 T—r
— Z Cr elwr 6’u’ew,ru
V2rT r=0 u=l—r
For large T and fixed r, we may approximate
T—r T
Z €u et & Zeue“"“ (5.1)
u=1-r u=1
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essentially because we are adding or removing a total of r terms and these are negligible
compared with the total length of the sum 7.

If we accept the approximation (5.1), we then have

1 < 1 <
Yeiwt ~ C eiw € eiwt
2rT t=21 ! ( ) 2rT t=ZI !

:
;

and hence, on taking squared moduli of both sides,
Ity (w) = |C(e”) *I1,e(w) (5.2)

with obvious notation: I7y and Ir. are the periodograms of the Y and e processes
respectively.

In combination with the result (*), (5.2) then shows that the periodogram ordinates
of Y, evaluated at Fourier frequencies, are approximately independent. Moreover,

E{Iry(w;)} = |C(e"™) PE{IT,e(w)} = f(w;)-

This completes the proof. [A fully rigorous proof is possible under the condition Y |c,| <
00, in which case it can be shown that the difference between the two sides in (5.2) converges
to 0 in probability, uniformly over all w, as T — oo. We shall not attempt to fill in the
details of this.]

This theorem is the central result of spectral estimation theory. It is very powerful:
for instance, note that we have nowhere attempted to give any remotely similar result for
the estimation of sample autocorrelations (and indeed the corresponding results for that
problem are much more complicated to state). This is one reason why experienced time
series analysts often feel they can gain more information about the process by studying
the spectrum than by studying the autocorrelations. However, it also points to some
undesirable features of the periodogram: Ir(w) for a fixed w is not a consistent estimate of
f(w), since it has an approximate exponential distribution with mean f(w), and therefore
variance f2(w), which does not tend to 0 as T — co. Also, the independence of periodogram
ordinates at different Fourier frequencies suggests that the sample periodogram, plotted
as a function of w, will be extremely irregular. There are some additional difficulties,
which we develop a little later on, with the performance of the sample periodogram in the
presence of a sinusoidal variation whose frequency is not one of the Fourier frequencies.
These difficulties cause us to introduce two new operations on the periodogram, smoothing
and tapering.

5.3 Smoothing

The idea behind smoothing is to take weighted averages over neighboring frequencies
in order to reduce the variability associated with individual periodogram values. However,
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such an operation necessarily introduces some bias into the estimation procedure. Theo-
retical studies focus on the amount of smoothing that is required to obtain an optimum
trade-off between bias and variance. In practice, this usually means that there is some
subjective judgement to be performed.

The main form of smoothed estimator is given by

fo=[ G (ﬁ“’) Ir(w)do (5.3

where Ir(-) is the periodogram based on T observations, K (-) is a kernel function and h
is the bandwidth. We usually take K (-) to be a non-negative function, symmetric about
0, and integrating to 1. Thus any symmetric density, such as the normal, will do, though
in practice it is more usual to take one of finite range, such as the Epanechnikov kernel

K(m):%(l—%), —V5 <t <5, (5.4)

which is 0 outside [—+/5, v/5]. This choice of kernel function has some optimality properties,
though as a practical matter it is generally agreed that these are much less important than
the choice of bandwidth h, which effectively controls the range over which the periodogram
is smoothed. The following discussion will show how the bandwidth is chosen theoretically.

Consider first the bias of the estimator (5.3). We may write

B~ [ K (252) f@

~ /_OO K (2)f (A + ha)dz

= [7 k@) {100+ s 00+ 150 100+ o0}

h2 f//
2

— O+ / 22K (z)dz + o(h?).

Here, the second line follows from the substitution w = A+ha and the change of range from
(—m,m) to (—oo,00) follows from the fact that, with small A, such a transformation does
occur asymptotically provided A is an interior point of the interval (=7, 7). The subsequent
expansion obviously assumes that f is at least twice continuously differentiable, so from
now on we make that as an explicit assumption. The final result justifies the approximation

. B2
Bias in f(A) ~ = ey / K (r)dz, (5.5)
valid asymptotically as T"— oo and h | 0.
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To examine the variance of (5.3), we should first note that, in practice, (5.3) will be
evaluated via a Riemann sum,

fo = Z/ Lk (A ; “’) In@yo~ 223 1k (A ‘h%') ()

where w; = 2mj/T is the j'th Fourier frequency. Since the Ir(w;) are asymptotically
independent,

Var{f(\)} ~ N~ L e (A_—hw”) F*(w))

T T2 L p2
J
2 1 A—w
~-— [ ZK? 2(w)d
hT J h ( h >f(w)w (5.6)

_ %/K2(x)f2()\+hx)dm

27 2
~ ()\)/K (z)dz.

So (5.5) and (5.6) together give the approximate bias and variance of f(A). It will be
noted that these are of the form

Bias ~ —, Variance =~

h2’ hT

where A and B are constants (depending on f and K, but not T or h). Thus the mean
squared error (=Bias?+Variance) is approximately

B
A24 il
h-l-hT

h— (%)é (5.7)

and then leads to the optimal mean squared error

which is minimized by taking

MSE = 5 x 474/5A2/5 B4/57=4/5 (5.8)

These formulae are rather difficult to apply in practice, because to evaluate A and B
requires not only that we know f(\), which we are trying to estimate, but also f"(\),
which is even harder. However, there are a number of ways in which these theoretical
results are useful in practice, e.g.:

(i) We can try a suite of test cases, such as ARMA models with known spectral
densities, to evaluate the optimal bandwidths for them, as a guide to what to do when the
true spectral density is unknown.
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(ii) The asymptotic results in (5.7) and (5.8) show how the results scale with T, i.e.
that the optimal bandwidth scales with 7-!/% and the resulting MSE is proportional to
T—*/5. This gives us some guideline when comparing data sets of different sizes.

g

(iii) At a more advanced level (well beyond the scope of this course), attempts have
been made at “automatic” bandwidth selection based on interactively updating the esti-
mates of the parameters A and B. Such methods can still be somewhat difficult to apply
in practice, however.

5.4 Tapering
This is based on a different idea, that of reducing leakage.

Consider a series of the form z; = cos(Q2t + ¢), 1 <t < T where (2 is not necessarily a
Fourier frequency. We may write this as the real part of Ae??*, for some complex number
A, so for simplicity we consider the complex series z; = e**, 1 < ¢t < T. The discrete
Fourier transform of this series, evaluated at a frequency w, is given by

T

% Z re” W = % Z Q-

t=1

To evaluate this, we make the following side calculation:

T Ty

E e = =€  —
T e —1
t=1

5 eiTy/2 _ e—iTy/2

N[ =

_ L@y

T eiy/2 _ e—iy/Z
_ iminy/2 1 sin(Ty/2)
T sin(y/2)

=/ T+UY/2 . D (y)

where Dr(+) is a function known as the Dirichlet kernel. We have D7 (0) = 1, Dp(y) =0
when y = 27k /T for integer k, but there are significant “side-lobes” to either side of the
main peak (Fig. 5.1(a)). These properties enter the periodogram because, in the above
case of z; = e** we have

It(w) « |Dr(w — Q)2

If Q is a Fourier frequency, and if It is evaluated only at Fourier frequencies {w;}, then
there is no problem, but at non-Fourier frequencies €2, these side-lobes may represent a
significant distortion of the spectrum.
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Fig 5.1: Dirichlet kernel, T=200
(a) Original (b) Tapered
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A solution to the side-lobes problem is tapering. Suppose we refine x; into

2r(t—1/2
Ty = %{1—003 (%)}
(5.9)
_ Loioe _ 1 iarsomie—1y2yr _ L iar-omit—1/2)/m
2 4 4

so that, after a little manipulation, we see that
1 Z ——
T t
t

, 1 1 o\ 1 o
= T+)(@=w)/2 2 Z D (Q — “Dr Q- )4+ -Dr(Q-—w—-) ).
e {2 T(Q—w)+ 5 T< Wt |+ Dr W= 7

Thus we see that, modulo a constant 2, the function D;(y) is replaced by a modified form
of Dirichlet kernel

~ 1 27 1 2
DT(y) = DT(?J) + EDT (y + T) + EDT (y - T)
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obtained by averaging over neighboring sidelobes. This indeed has a dramatic effect as can
be seen from Fig. 5.1(b). There is now a very strong central peak and the neighboring
sidelobs, although still present, are so small as to be almost invisible.

The operation that takes z; into x; is called tapering. In less technical language,

the idea behind this is to reduce the end-effects associated with forming a finite Fourier
transform. A more general form of taper is to define Z; = x.h; where

(%{1—cos<w>} 1<t <m,
m+1<t<T—m, (5.10)

l{l—cos(w)} T—-m+1<t<T,

ht:<

—_

2 m

\

which is called a 100p% cosine taper where usually p = 2m/T. (Note, however, that S-Plus
departs from this convention by defining p = m/T instead.) Thus the operation (5.9) is a
100% taper; in practice it is usual to apply a 10% or 20% taper in the grounds that this
significantly reduces leakage without distorting the original data too much.

Much of the above discussion is taken from Bloomfield (1976), while the recent book
by Percival and Walden (1994) goes into the whole issue of tapering in much more detail.

5.5 Examples
The following examples illustrate the S-Plus routine spec.pgram.

Fig. 5.2 shows time series plots (tsplot command) based on a monthly series of
carbon dioxide readings at Mauna Loa, Hawaii, from January 1958 to December 1988
(31 years’ complete data). This particular series has become famous in the debate over
the greenhouse effect, because it is one of the longest available series of atmospheric COs
readings, and it shows a very clear upward trend, as well as strong seasonality.

To study the nature of the trend, Fig. 5.2 also displays residuals from the series after a
linear, quadratic or cubic trend have been subtracted (in all three cases, by ordinary least
squares without any adjustment for seasonality). The residuals from a linear trend show
clear curvature, but there is no evidence of a systematic trend in either of the remaining
two plots. Therefore, it appears that among simple polynomial trends, the quadratic trend
is the appropriate one to adopt. This is also confirmed by F' tests for the significance of the
quadratic and cubic components, though of course these should not be taken too seriously
in view of the evident seasonality and autocorrelation in the data.
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Fig. 5.2: Plots of Mauna Loa data
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Fig. 5.3 shows spectral plots from the raw data. In accordance with the default
option in S-Plus, all of these are based on the data from which a linear trend has been
subtracted. Four plots are shown, corresponding to the S-Plus options spans=1, which
gives the raw periodogram, spans=c(5,5), spans=c(13,13) and spans=c(21,21), which
correspond to increasing amounts of smoothing. The cross emblem in the upper right
corner of the plot represents the bandwidth of the smoother (cross-piece) and the upper
and lower bounds of a pointwise 95% confidence interval for the spectral density about the
plotted curve (vertical line of the cross). The confidence bands are useful because they
give an idea about the significance of the various fluctuations in the plot. For example,
in plot (b) it seems clear that the small wiggles at the right hand end of the plot are not
significant, which the large peaks at approximately frequencies 1/12, 1/6 etc. do appear
to be significant. Plot(b) seems undersmoothed, but by the time we get to plot (d), even
the large peaks are merging into one another so this seems clearly overmoothed. The ideal
seems somewhere between plots (c¢) and (d), though this is a subjective judgement.

Fig. 5.4 shows similar plots but based on the series in which a quadratic (rather
than linear) trend has been removed from the data. The overall comparison of these
plots, particularly with respect to the amount of smoothing required, seems similar to Fig.
5.3, but there is noticably less of a peak near frequency 0. High spectral density at low
frequencies is usually taken as an indicator of trends being present in the data, though it
can also be an indicator of long-range dependence, a topic which lies beyond the scope of
the present notes. In this case, however, it seems clear from Fig. 5.2 that a non-linear
trend is present in the data, so this is the most natural explanation.

Apart from its behavior at 0, the most prominent feature of the spectra in both Figs.
5.3 and 5.4 is the seasonal variation, which is apparent from the main peak at frequency
1/12 but also from subsidiary peaks near frequencies 1/6, 1/4 and 1/3. These are the
harmonics of the main annual cycle and are to be expected in a series, such as this one, in
which there is a strongly defined, but non-sinusoidal, periodic variation.

Fig. 5.5 illustrates the effect of tapering. In this case we have two plots with the same
amount of smoothing, but with 0% and 100% (p = 0.5 in S-Plus) tapering. It is obvious
that the tapered series leads to more sharply defined peaks in the spectral density.

Fig. 5.6 is a time series plots of a series of “global” temperature data produced by
the Climatic Research Unit of the University of East Anglia. This is based on monthly
values for average land and sea temperature over the northern hemisphere for 1854-1989
(136 years, 1632 data points).

The data are calculated in the form of anomalies, i.e. each month’s data average is
expressed as a difference from the 1950-1979 mean value for that month. This is a standard
device used by climatologists to remove seasonal effects from the data, though as we shall
see, it can have a misleading effect.
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The top plot in Fig. 5.6 shows the full data series, but it is obvious that in the
early years of the data, the variance is much higher than later, a consequence of the
sparseness of available data in the nineteenth century. The bottom plot shows just the last
1024 observations (correponding roughly to years 1905-1989) and this is much smoother;
henceforth we use just the bottom series.

In this case there seems to be visual evidence of a trend, which indeed has been the
focal point of much of the current debate on global warming. Once again, residuals from
a linear trend are used as the basis for a spectral plot, and Fig. 5.7 shows four such plots
with different degrees of smoothing. In this case, the longer length of the series (compared
with Mauna Loa) might lead one to expect to use a spectral estimate that smoothes over
a larger number of frequencies, and this is confirmed by visual inspection of the plots
which makes the fluctuations in (b) seem clearly insignificant — the ideal here seems to be
somewhere between (c) and (d).

Two features of the spectral plots seem apparent. First, there is again a peak near 0
— which may be due to additional trend terms that have not been allowed for, but in this
case there is no clear evidence for that, and the plots have alternatively been interpreted
as indicating long-range dependence in the data. The second feature is that, in spite of
deseasonalizing the data through the calculation of anomalies, there is still a spectral peak
near frequency 1/12. This seems most likely to be the result of a differential warming
between the summer and winter months.
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Fig. 5.7: Temperature Spectra
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6. EXAMPLES OF TIME SERIES MODELS

6.1. EEG data analysis

This section is based on data provided by Mike West and Andrew Krystal of Duke
University.

400 -

200 -

voltage (mcv)

-200 -

T T T T T T

0 5000 10000 15000 20000 25000
time

Fig. 6.1. A section of an EEG trace.

Fig. 6.1 displays recordings of an electro-encephalogram (EEG) trace on a patient in
electro-convulsive therapy. This is a segment of a long EEG trace arising in a study of
waveform characteristics in multi-channel EEG signal analyses. These studies are germane
to assessments of differing ECT protocols. Comparison of two or more such time series
underlies part of the study, and appropriate modelling of individual time series represents
a starting position for comparative analyses. The data displayed represent variations in
scalp potentials in micro-volts during a seizure, the frequency of data collection being 256
data points per second; thus the sampled trace represents about 100 seconds’ worth of
real-time data.
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Fig. 6.2. A subset of the same data.

It is immediately obvious that the data cannot be modelled as a stationary time
series. If nothing else, there are clearly wide variations in the variance of the time series.
Moreover, it is extremely unlikely that such a simple device as differencing would achieve
anything at all.

One approach to such a data set is to look at short sections of it to ascertain whether
there are interesting features that might then be generalizable to the full data set. Another
feature is that the sampling frequency is very high, and the task of analysis can be simplified
somewhat by only using every k’th observation, for some k£ > 1. For the following analysis
we have somewhat arbitrarily selected k& = 6.

Fig. 6.2 shows a much shorter data set, of 400 observations, abstracted from Fig.
6.1 by picking out every sixth observation starting at observation 5,000. In this case the
assumption of a stationary series does seem reasonable, so our next step is to plot the acf
and pcf functions. This is done in Fig. 6.3.

The acf shows a strong sinusoidal pattern with a frequency of about 12. The pcf
shows a significant positive pcf at lag 1, and a group of significant negative pcfs at lags
2-7. Thereafter the pcfs are smaller in magnitude, though it is difficult to assert that they
are negligible.
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Fig. 6.3. ACF and PCF plots of the data.
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Fig. 6.4. AIC plots for AR models.
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Time series plot ACF
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Fig. 6.5. Residuals from AR(16) model.
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Fig. 6.6. Another subset of the same series.

The preliminary plots suggest that a high-order autoregressive process might be a
reasonable fit to the data, though it is clear that we must take the order p to be at least
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8. To test this assertion further, a series of AR fits was made using the ar.yw command
in SPlus, with model selection according to the AIC criterion.

Fig. 6.4 shows the AIC values (relative to minimum value set to 0) for models with
p=0,1,2,...,20. However, it is clear from Fig. 6.4 (a) that the first few lags, for which
the AIC is of the order of hundreds, are not reasonable models, so we concentrate on lags
7-20 as in Fig. 6.4 (b). This picks out lag 16 as the one with smallest AIC, though lag
13 is only infinitesimally worse, and any of the lags 12-17 would seem to give reasonable
models.

Accordingly the model was set at AR(16). The estimated coefficients are the same as
the first 16 partial autocorrelations from Fig. 6.3 (b), and the residual standard deviation
is 45.4. Residuals from this model were calculated, along with their ACF, and are plotted
in Fig. 6.5. The main feature of the residuals is a significant ACF at lag 26 which may be
of concern.

Fig. 6.6 shows another subset of the data in Fig. 6.1, constructed in exactly the
same way but this time starting from observation 20,000. There is none of the apparent
periodicity of Fig. 6.2, and plots of the ACF and PCF (Fig. 6.7) do not show periodic
behaviour either. There is a slight hint of periodicity in the ACF plot, but this is not
reflected in the PCF plot, which looks very consistent with an AR(2) model. In fact the
AIC criterion does pick out p = 2 as the appropriate order in this model, and the residuals
(not shown) again look completely random. The residual standard deviation in this case

is 12.4.
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Fig. 6.7. ACF and PCF of the series in Fig. 6.6.
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Fig. 6.8. Statistics for a sequence of subseries.

This shows a number of distinctions between the two subseries. Not only is the residual
standard deviation much smaller in the second series — that much at least was evident
from Fig. 6.1 — but the structure of the series is different (much lower order in the second
series) and there is no evidence of any periodic behaviour.

To take the comparison further, the same analysis was repeated for 41 subseries, each
constructed in exactly the same way, starting with observations 1, 601, 1201,..., (in other
words, the starting point is advanced along the thinned series in lags of 100). Fig. 6.8
plots the order of the series as identified by AIC, the residual standard deviation o, and
the first two autoregressive coefficients ¢; and ¢, for each of the 41 subseries. The order
is consistently in the range 10—15 for about the first 30 subseries, but then drops into the
2—>5 range. Each of the three parameters plotted shows a systematic drift over the full
length of the series expect possibly at the very end (note the impulse at the very end of
the series in Fig 6.1, which explains why ¢ suddenly jumps up at the end in Fig. 6.8).

In conclusion, except at the very end, the series seems consistent with an autoregressive
model with a steady drift of the main coefficients.
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6.2. Temperature trends in Amherst, MA
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Fig. 6.9. Annual mean temperature in Amherst, MA.

The data consist of 149 years’ of temperatures in Amherst, Massachusetts. The orig-
inal data available consisted of monthly averages but initially we consider only annual
averages, which are plotted in Fig. 6.9.

It is immediately apparent that there is a strong upward trend — unusually so for a
series sampled at a single station, since most examples used to illustrate “global warming”
are based on temperature averages over the whole world or at least major portions of it.

In Fig. 6.10, the ACF and PCF of the raw data series are plotted. There is no sign
that the ACF is converging to zero — a typical sign that the series in nonstationary — and
the PCF is also hard to characterize.

One way to deal with nonstationary series is to difference, and Fig. 6.11 shows the
ACF and PCF of the differenced series. The ACF now looks much nicer, but somewhat
worryingly, the PCF still shows relatively large values at large lags, which suggests that
perhaps the differenced series is not very stationary either.
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Fig. 6.10. ACF and PCF of annual Ambherst data.
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Fig. 6.11. ACF and PCF of differenced Amherst data.

An alternative method of dealing with the nonstationarity in this series is to fit a
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linear trend to the observed series {y;} in the form
Y=o+ Pus+x,, t=1,2,..,T, (6.1)

where o and (3 are constants, {us} is a set of fixed covariates and {x:} is a zero-mean
residual process, which we take to be itself a time series model. In the discussion which
follows we take u; = ¢ — ZEL (centred about 0).

It is possible to estimate o and 3 by least squares in (6.1), and then fit a time series
model to the residuals {z;}. However, a slightly more efficient approach is to estimate «,
and the time series parameters in a single shot. The arima.mle programme within Splus
allows one to do this by the addition of a parameter xreg.

We need to note some caveats about arima.mle. The implementation of this in Splus
assumes the mean is (. Thus by using the arima model with d = 0, it is necessary first to
subtract the sample mean from every y; value — a point which has been noted by some
authors (Venables and Ripley 1994, p. 364) but is not stressed in the SPlus manual.

This gets more complicated if one fits ARIMA (p, d, q) with d > 0 because SPlus still
assumes that the mean of the differenced series is 0. To get around this with, say, d =1, it
is necessary to replace each y; with y; — y — Bu; where § = % Sy, ug =1t — % as above
and

2 _Yr—Wn
P="Fr—1"

(6.2)

In this way, as may be checked directly, the sample mean of {y; — y;—1, 2 <t < T} is
adjusted to 0. However, this adjustment should not be made when fitting with d = 0 as
then removing the slope has a real effect on the model! Because of this, the application
of arima.mle with different d is a more complicated business than it may appear at first
sight.

A typical format of the arima.mle command is as follows:
z<-arima.mle(y,n.cond=5,model=1ist (order=c(1,0,2)))

Here y is the data series to which the model is fitted, n.cond is the number of ini-
tial values on which the likelihood fit is conditioned (m in our earlier notation) and the
order of the model is specified by (1,0,2) representing p, d and ¢ respectively — thus,
the command above would fit an ARMA(1,2) model. The output z contains all the de-
tails of the fitted model — for example, z$model lists all the parameters, z$var.coef
the estimated variance-covariance matrix, z§loglik is twice the negative log likelihood,
z$AIC=2z$1loglik+2(p+q) is the AIC value, and so on. Another useful variable to check is
z$converged — beware if this is F!

To modify this to fit the model (6.1), one could use one of the commands

64



z<-arima.mle(y,n.cond=5,model=1list (order=c(2,0,0)) ,xreg=u
or
z<-arima.mle(y,n.cond=5,model=1ist (order=c(2,0,0)) ,xreg=cbind(1,u))

where u is the {u;} variable mentioned above — in this case, we are assuming the structure
of {x;} is AR(2) but of course the p and g parameters could be modified to allow other
models. The first of these commands fits just one regressor u; while the second also treats
the constant 1 as a regressor. The second of these forms is the most comprehensive model
of all the ones considered in this section, but to allow direct comparability with the earlier
fits (where we simply estimated the mean by %), the first form (with xreg=u) is the one
adopted here. This issue is of no practical importance for the results obtained.

For the data set in question, 15 models were tried: five with d = 0 and no xreg, five
with d = 1 (incorporating the adjustment noted above) and five with d = 0 and xreg. The
results were as follows:

(p,d,q) xreg? converged? Loglik AIC

(1,0,0) No T 479.5823 481.5823
(0,0,1) No T 497.3821 499.3821
(2,0,0) No T 460.7184 464.7184
(1,0,1) No T 450.5513 454.5513
(1,0,2) No T 478.7780 482.7780
(1,1,0) No T 476.8604 478.8604
(0,1,1) No T 449.6190 451.6190
(2,1,0) No T 469.6354 473.6354
(1,1,1) No T 447.8834 451.8834
(0,1,2) No T 447.8317 451.8317
(1,0,0) Yes T 441.4168 445.4168
(0,0,1) Yes T 442.2024 446.2024
(2,0,0) Yes T 437.8472 443.8472
(1,0,1) Yes T 439.4146 445.4146
(0,0,2) Yes T 437.9397 443.9397

Table 6.1 Summary of models for annual Amherst data

A first glance at this table indicates that, judged by AIC, the models incorporating
a linear trend are the best; for those without a trend, the models with d = 1 improve on
those with d = 0 but are still considerably worse than those with a trend.

In a little more detail, the best of the d = 0 models without a trend is the ARMA(1,1)
model, but the coefficients for this are very close to the boundary of the stationarity region:
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$1 = 0.983 with standard error 0.018 (= v/0.00034, the latter being the leading entry of
the z$var.coef matrix), and f; = 0.833 (standard error also 0.018). In particular, ¢; is
not significantly different from the boundary value 1. Amongst the d = 1 models, the best
appears the ARIMA(0,1,1) model but this is not as good as judged by log likelihood or
AIC as the best of the trend-based models, which appears to be the AR(2). This model has
AR coefficients <[31 = 0.124 and qA§2 = 0.156, each with standard error 0.082. The residual
standard deviation is & = 1.22, which improves on the 6 = 1.32 for the ARIMA(0,1,1)
model (this is one concrete indication of the superior fit of the trend+AR(2) model).
Finally, application of the arima.diag(z) command produces the diagnostic plots shown
in Fig. 6.12.

This plot shows the standardized residuals, the ACF, and the P-value of the Box-Pierce
statistic, computed for various values of K (the total number of lags used in computing
the statistic). All the P-values are quite close to one (whereas it is small values, < .05 for
instance, which would give us cause for concern). Thus the evidence is that the model fits
the data very well.

6.2.1. Estimating the trend

At this stage we have three estimators for the trend coefficient 3: the ordinary least
squares estimator (B say), 3 glven by (6.2), and the MLE . In this example their values
are B =.00219, B = .00251, ﬁ = .00226. There is not much of an argument for using 3
as an estimator of 3, although we should point out that if we follow the recommendations
of some authors and use the mean of the differenced series as an estimator of trend, then
§ is the estimate obtained. As far as the comparison between 3 and ,8 is concerned,
classical studies going back to papers by Grenander in the 1950s shows that there is very
little difference between them as point estimators, as indeed appears to be the case in this
example. However, where it is necessary to be careful is in estimating the standard error
of this parameter. The classical formulae for linear regression give 3 a standard error of
.0022 (a t-value of 10.2) but this of course ignores the correlation — one would expect this
standard error to be too small and hence the ¢-value too large.

Unfortunately when arima.mle is applied using the xreg option, the programme does
not give the standard error of B One can deduce the t-value in an indirect way, however,
as follows. Consider the AR(2) model with trend and compare it to the corresponding
model without trend — line 3 in Table 6.1. The difference in Loglik values is 460.7184—
437.8472=22.87 so under a standard likelihood ratio test, recalling that the SPlus value
of loglik is actually —2 log L, this is to be compared with the 95% or 99% point of a x?
distribution (and so is, of course, overwhelmingly significant). However, in this context, it
follows from standard likelihood theory that the x? value for a one-parameter likelihood
ratio test is approximately the square of the ¢ value for a Wald test — in other words, the
latter would be approximately 1/22.87 or 4.78. By this indirect argument we deduce that
the true t-value for the 8 parameter in this model is about 4.8, and not 10.2 as quoted
above. In this particular example, the correction does not affect our conclusion that g is
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statistically significant, but in many similar examples the difference between modelling the
correlations and ignoring them is critical to the final results!

ARIMA Model Diagnostics: aml
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Fig. 6.12. Diagnostics from final model.
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There are more direct ways of computing standard errors, especially for the least
squares estimator 3. For instance, from the formula

Z YUt

=5

(we are assuming Y u; = 0), we deduce

T T
2
{3 u}

where {7} denotes the autocovariance function.

Var{8} =

One could try to evaluate (6.3) using the sample autocovariances, but this is generally
considered to be a bad idea because the sample autocovariances have rather poor sampling
properties. A better idea is to substitute the theoretical v4’s based on the fitted model. In
this case the fitted model is AR(2) with ¢ = .12424, ¢ = .15643 and residual standard
deviation o = 1.22474. In this case it may be checked (exercise for the reader!) that
v = .T7813 x .46248% + 50516 x (—.33824)" for all k > 0. Direct evaluation of (6.3) then
yields that the estimated standard deviation of § is .0029. Note that this is substantially
smaller than the above-quoted approximate standard error of .0047 for B, which seems to
point to a failure of the asymptotics somewhere along the line, since from a theoretical
point of view, the standard deviation of B should be smaller than that of ,@

However, this is not the only way to evaluate (6.3). From the formula

us

e = / T ek F(N)dA,

jus
2

where f()) is the spectral density, we see that

ZZ‘:I Zf:l UsUtYs—t _ ZZ:I Z’le UsUt f_%% ei)‘(s_t)f()\)dA
(i (2 (6.4)

= /_ : U F(A)dA

us
2

where
T it 2
‘Zt:1 uge’ ‘
U\ = > u2}2 (6.5)
t
Since for the AR(2) model,
o2 1 2
) == . .
f( ) o1 = ¢1€7’>‘ _ d)zeilz)\
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the integrand in (6.4) is easily evaluated and the integral itself may then be found by
numerical integration. The functions U(A) and f(\) are depicted in Fig. 6.13.
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Fig. 6.13. Ilustration of (6.4): (a) U(A), (b) f(A), using fitted AR(2) model, for the
annual Amherst data.

For high-order ARMA models, it is easier to calculate the spectral density than the
autocorrelations. This makes (6.4) easier to use in practice than (6.3). For example,
sometimes spectral densities are estimated by fitting a high-order AR model to the data
and plotting the theoretical spectral density of the fitted model. This is done in Fig.
6.14(a) below. Alternatively, of course, one may use nonparametric spectral estimates as
in Chapter 5. One such estimate is plotted in Fig. 6.14(b). Both of these plots were based
on the detrended series in which both the mean and the linear trend had been removed
from the data. In this case, it is not at all clear that there is any reason to depart from
the parametric AR(2) fit, and indeed, the dissimilarity between the spectral densities in
Fig. 6.14(a) and (b) serves as a warning of overfitting. The resulting standard errors of 3,
however, are very similar — .0029 using the AR(2) model, .0030 using AR(8), .0026 using
the nonparametric spectral density estimate.
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Fig. 6.14. Estimated spectral densities under (a) AR(8) fit, (b) Nonparametric smoothed
estimate.

6.3 Seasonal analysis of the Amherst temperature data

As mentioned in the previous section, the original data set from which Fig. 6.9 was
plotted consist of monthly averages, a total of 1788 observations. It is therefore natural to
use the whole of this data set and to fit a seasonal model.

The series was standardized by removing the overall mean and a linear trend (since
we already know the latter is present) and the ACF and PCF computed (Fig. 6.15). These
plots actually look a lot like Fig. 6.3 for the EEG data, which suggests we should again use
a high-order AR(p) model. In fact AIC selects p = 26 but this approach does not remove
the difficulty which we are about to identify in the automatic fitting of ARMA models to

this series.

In this case, a sequence of seasonal ARIMA models was fitted. A typical command in
Splus might be

> z<-arima.mle(x,n.cond=48,model=1ist(list (order=
+ ¢(0,0,2)),list(order=c(1,0,0) ,period=12)))

This fits the model which, in the notation of (4.7) of the main notes, has 6(B) =
14+ 60:B+60:B% O(B) =1, ¢(B) =1, ®(B) = 1 — ®;B'2. This particular model was
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successfully fitted (z$converged=T) with a loglik value of 10031.66 and AIC of 10037.66.
The luxury of a relatively large n.cond seems affordable in view of the total length of the

series.
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Fig. 6.15. ACF and PCF for monthly data.
Nonseasonal Seasonal Component
Component
None (1,0,0) (0,0,1) (2,0,0)
(1,0,0) 12687.53 10040.27 11716.97 9559.978
(0,0,1) 13241.32 10048.26 12227.67 9562.820*
(2,0,0) 11137.40 10033.46 11096.45* 9558.905*
(1,0,1) 12081.16 10033.31 11536.65* 9557.585*
(0,0,2) 12307.51 10037.66 11655.63* 9561.175*

Table 6.2 AIC for seasonal ARIMA models (data with linear trend removed).

convergence as represented by the $converged variable.

*=no

In fact for the nonseasonal (p, d, q)(=(0,0,2) in the example just given), every combi-
nation of (1,0,0), (0,0,1), (2,0,0), (1,0,1) and (0,0,2) was tried. For the seasonal (P, D, @),
the combinations were (1,0,0), (0,0,1), and (2,0,0), as well as nonseasonal models in which
this component was absent. Thus twenty models in all were tried, and the results are
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shown in Table 6.2. Unfortunately, quite a few of these model fits (shown by asterisks
in the table) resulted in z$§converged=F. The best loglik or AIC models resulted from
(P,D,Q) = (2,0,0), but in this case the only one of the (p,d,q) combinations to give
z$converged=T was (1,0,0). For this model the AIC value was 9560.0, which is clearly
better than the above, but unfortunately this model still does not fit the data. The prob-
lem is shown by the arima.diag diagnostics, plotted in Fig. 6.16.
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Fig. 6.16. Diagnostics from seasonal ARMA model.
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The ACF plot of the residuals shows strong negative autocorrelations at lags 12 and
24, indicating that the seasonal effect has not been removed. The (Box-Pierce) goodness
of fit statistic confirms this, with P values well below 0.05 at K = 11 or 12. The PCF plot
(not shown) is even worse, with strongly significant negative correlations at lags 12, 24,
36, 48... Moreover the same problem was found with every other seasonal ARIMA model
tried. At this stage, the seasonal ARIMA idea does not seem to be working.
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Fig. 6.17. Monthly summary statistics.

To investigate the source of this problem further, some monthly summary statistics
were computed (Fig 6.17). All of these except the “Monthly Slopes” plot were obtained
from the detrended data in which the overall mean and linear trend had been removed. For
each of the twelve months, all data values for that month were extracted, and the mean,
standard deviation and correlation with the previous month were computed, along with
standard errors (the standard errors being computed with the assumption that all values
along the series were independent, but this suffices for an exploratory analysis). The
standard deviations and correlations were computed with the idea that the true model
might be of PAR(1) form, as in (4.8) earlier. In this model, ¢(™ represents a monthly
autoregressive coefficient (for m =1,...,12), and ¢{™) a monthly standard deviation. Thus
if the monthly standard deviations were significantly different, that would point towards a
model with different values of (™) for each month, while if the monthly correlations were
significantly different, that would indicate that we need the separate ¢(™) terms as well.
The monthly slopes were computed because of the suggestion at the end of Chapter 5 of
the main notes, that the warming effect might be different for different months of the year.
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In fact, what the plots in Fig. 6.17 show is that the monthly means are very highly
significantly different, as of course was bound to happen, but also that there is significant
variation in the standard deviations, these being much lower in the summer than the
winter. Any analysis which does not take this into account is bound to be deficient. It
is not so clear whether we should also take into account the seasonal variations in the
first-order correlations and in the coefficient of the linear trend. At least, there is some
justification for ignoring these variations, but we cannot ignore the variation in monthly
standard deviation.

This suggests that we should standardize the series with respect to both the monthly
means and standard deviations (as well as the overall linear trend) before fitting an ARMA
model. After doing this, the same 20 models were fitted to the detrended data (Table 6.3)
and the AIC criterion picked out the ARMA(1,1) model (with no seasonal component) as
the most suitable. Note that the AIC values shown here are not directly comparable with
those in Table 6.2, as they are not adjusted to allow for rescaling. The ARIMA diagnostics
(not shown) are fully consistent with this model.

Nonseasonal Seasonal Component
Component

None (1,0,0) (0,0,1) (2,0,0)
(1,0,0) 4889.461 4891.458 4891.458 4893.326
(0,0,1) 4894.467 4896.460 4896.460 4898.411
(2,0,0) 4881.163 4883.148 4883.148 4884.736
(1,0,1) 4878.088 4880.084 4880.084 4881.688*
(0,0,2) 4884.985 4886.971 4886.971 4888.681

Table 6.3 AIC for seasonal ARIMA models (data with linear trend removed standardized
by monthly means and standard deviations). *=no convergence as represented by the
$converged variable.

6.3.1 Forecasting

Forecasts are generated in SPlus, after a model has been fitted, using the
arima.forecast function. The first 24 values in Fig. 6.18 represent the observed last 24
values of the time series. The next 24 are forecast values generated from the
arima.forecast function, adjusted to reflect the original means, standard deviations and
long-term linear trend. The dotted lines around the last 24 observations represent 95%
probability limits for the forecasts, again adjusted to allow for the variable monthly stan-
dard deviation.
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Fig. 6.18. Illustration of ARMA forecasting.

6.3.2 PC processes

A generalization of ARMA processes is to periodically correlated (or PC) processes in
which both the variances and autocovariances are, potentially, seasonally dependent.

Definition. A time series {z;} is periodically correlated with period M if

Cov{Trat 1m, ThM4mar} = 1™, (6.6)

independently of k, whenever £ > 0, 1 < m < M, r > 0. The case M =1 is the usual
definition of a (second-order) stationary process, but for M > 1, the implication is that
the variances and autocovariances cycle with period M. As an example, the “monthly
S.D.s” and “First-order correlations” plots of Fig. 6.17 represent estimates of %(‘m) (1<
m < M = 12) for r = 0 and 1 respectively. Note also that this in principle a more general
concept than seasonal ARMA models — the latter may always be rewritten as ordinary
ARMA models and so are stationary processes in the usual sense, whereas PC processes
are nonstationary except when M = 1.

A number of models have been proposed for PC processes. Probably the easiest one
to handle is the PAR(1) model:

75



again defined for £ > 0, 1 < m < M. Here gb(m) and o(™) are seasonal autoregressive
components and standard deviations, and the residual process {z:} is a (non-seasonal)
ARMA process. The stationarity condition is [, |¢(™)] < 1.

For the present example we must also allow for different means in each month, as well
as an overall trend term. Therefore we expand the model (6.7) to

Yiritm = ™ + Bukrrim + Temem 1 <m < M, k>0, (6.8)

where {y;} is the observed time series, 3 is the overall linear trend, {pm,, 1 < m < M}
are the residual monthly means and {z;} is a zero-mean PAR time series as in (6.7). The
possibility of different trends in each month is not considered in this analysis.

Lund, Hurd, Bloomfield and Smith (Journal of Climate 11, pp. 2789-2809, 1995)
fitted a number of models of the form (6.7)-(6.8) to the Amherst data. In the case where
#(™) = 0 for all m, the series is not really PC since the series becomes an ordinary ARMA
process after standardizing (or adjusting) with respect to the monthly standard deviations;
Lund et al. called this kind of series seasonally adjusted or SA. Using a maximum likeli-
hood fit, they selected an AR(2) process for {z;} and based on fitting all 27 parameters
(B, 1V, ., w2 W52 b1 hy) by joint maximum likelihood, they obtained a loglik
(i.e. —2 log L) value of 8802.2. For the corresponding PAR(1) model, the residual process
{7z} was identified as ARMA(2,1) and they found loglik=8775.6 based on 40 parameters.
As judged by a x? test, the difference between the two fits (T = 26.6 with 13 d.f.) is
significant at the level P = .014. Using the PAR(1) model, they estimated § (in °F per
year, for comparability with the results quoted in Section 6.2) to be 0.019 with a standard
error of 0.0025, a t ratio of 7.6.

There is some possibility of reducing the number of parameters in this model by
representing the coefficients p(™, o(™) and ¢("™) as Fourier series. For instance,

S
o™ = Dy + ZDj cos{2mj(m — p;)/12} (6.9)

i=1

reduces {o("™} to an S-term Fourier series with 25 +1 parameters Dy, ..., Dg, p1, ..., ps still
needing to be estimated. It was found that S = 3 was adequate to represent the variations
in standard deviation. Similar analysis for the PAR(1) model reduced {¢(™} to a 2-term
Fourier series; no such reduction was possible for {,u(m)}. With these simplifications, the
loglik for the SA model became 8808.8 with 22 parameters, that for the PAR(1) model
was 8788.7 with 28 parameters. The evidence in favour of the PAR model is again very
strong (T = 20.1 with 6 d.f.; P =.003).
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6.4 Volatility and the stock market

10

-10 A

0 5000 10000 15000

Fig. 6.19. Plot of the S&P series.

Fig. 6.19 shows 16,127 values for the daily logarithmic price change, Ap; = 100{log p;
—log pt_1}, where p; is the Standard and Poor’s Composite Price Index, from 1928-1987.
The series has been adjusted to remove systematic calendar and trend effects. Henceforth,
this will be called the S&P series.

A key feature of most financial time series is “volatility”, or the tendency of such series
to display sharp changes in the variance over time. As an example, Fig. 6.20 shows three
relatively short sub-series, together with PACF plots. All three subseries are not very far
from white noise as judged by the PACF plot, but the standard deviations of the three are
very different from one another.

A first possible analysis of the series is simply to fit a high-order AR model to the
whole series. The AIC criterion selects p = 11 as the appropriate order of the series, but
the residual standard deviation is 1.142, compared with 1.154 from the original series —
only about a 1% reduction! Of course it would be unrealistic to expect a series of this
nature to yield to some simple time series analysis, but a more specific criticism is that
the AR analysis takes no account of volatility.
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Fig. 6.20. Three subseries and PACF plots.

One possible way to deal with this is to mimic the analysis shown earlier for the EEG
data, i.e. fitting AR models to successive subsets of the data and tracing the variability
of the coefficients. This is done in Fig. 6.21, which has been computed in the same way
as Fig. 6.8 for EEG. In this case, 79 subseries of length 400 were extracted, starting at
n = 1,201,401, ...,15601. However, the results are not so satisfactory, since the parameters
in Fig. 6.21 do not vary nearly as smoothly as those in Fig. 6.8. Moreover, it is not clear
that we want to analyse the series this way anyway. In Fig. 6.19, unlike Fig. 6.1, there is
no reason to disbelieve the notion that the series is stationary — the difficulty is finding a
model which accounts for the changing volatility.

One class of models that has been widely studied in the econometrics literature is the
family of ARCH (for AutoRegressive Conditional Heteroscedastic) models. Heteroscedastic-
ity refers, of course, to the property of nonconstant variance; conditional heteroscedasticity
implies that this variance can be modelled conditionally on past data, and this is autore-
gressive if the form of the conditioning is based on linear functions. The ARCH model of
order 1 for a zero-mean time series {z;} is defined by

ry|rs, s <t~ N(0,07),

2 2
Oy = Qg+ oTp_q.

(6.10)
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Fig. 6.21. AR models fitted to 79 subseries of the S&P data.

A generalization of (6.10) is to the model

TelTs, s <t~ N(0,0’tz),

2

(6.11)
oy = 0o+ almf_l + ﬁlaf—l

known as the first-order GARCH model. Both models may be generalized in the obvious
way to higher-order autoregressions. Then we may extend them to include an ordinary
autoregressive term. This leads us to suggest the following GARCH(p, ¢, ) model for an
observed series {y:}:

p
Ys = Z(bjyt—j + T,

j=1
TplTs, s <t~ N(O,atz),

q T
2 _ 2 E ( o2
0y =0+ § :aﬂf't—j + D Bioy—j-
i=1 =1

(6.12)

As a first check to see whether this kind of model might be reasonable, Fig. 6.22 shows
a scatter plot of y2 1 against y2, together with a superimposed smoothed curve obtained
using the lowess function in Splus. Some outliers outside the bounds of the plotting region
are omitted from the plot. The smoothed curve suggests that, at least for relatively small
y2 (but covering most of the data), a linear fit is reasonable.
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Fig. 6.22. Plot of y? against y2_;, and a smoothed curve.

A sequence of GARCH models were fitted by a numerical maximum likelihood pro-
cedure, where the likelihood was computed conditionally on the first 20 data values. The
values of loglik (=2 log L, to be consistent with earlier usage) are given in the following
table:

p q T Loglik

1 1 0 48538.2
1 1 1 46174.6
2 1 1 46138.6
2 2 1 46097.3
3 2 1 46086.6
3 3 1 46082.9

Table 6.4 Summary of GARCH models for S&P data

Each of these models is a significant improvement on its predecessor, but attempting to
add further terms either resulted in no significant improvement or else ran into boundary
problems. The latter arise because the conditional variances must always be positive and
this is a meaningful constraint on the parameters! The final fitted model has $1 =0.169
(standard error .009), ¢» = —.056 (.009), 3 = .028 (.008), & = .012 (.002), &1 = .145
(.010), &p = —.059 (.013), &z = —.019 (.010), B1 = .926 (.007).
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In summary, the GARCH models improve significantly (as judged by log likelihoods)
on simple AR models, but it is open to debate whether they are really satisfactory models.
For example, there is still a danger that one might find 02 < 0 when one tries to predict
from the model! The positive feature is that they capture two features that are clearly
present in financial time series — nonlinearity and heteroscedasticity — but whether they
do this in the best way is still very much open to debate.
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7. STATE SPACE MODELS AND THE KALMAN FILTER

State space models are an alternative formulation of time series which have a number
of positive features, including:

e All ARMA processes may be reformulated as state space models, and this allows
a superior treatment of some problems associated with ARMA models, such as exact
likelihoods and predictive distributions in short time series, or for a more elegant handling
of missing data problems.

e Extension to nonstationary models — for example, a common model in applications
of time series analysis is an ARMA with time-varying coefficients, and this situation is
handled straightforwardly within a state space formulation.

e Multivariate time series — the standard state space model formulation is multivari-
ate and so automatically suggests models for multivariate time series, which may be easier
to handle than multivariate ARMA models (though, of course, such things do exist and
there is an extensive theory about them; see Liitkepohl 1993, for example).

e Bayesian approach — the state space model is naturally treated from a Bayesian
point of view and so allows one to take advantage of the more general and flexible approach
to inference that Bayesian theory provides.

The general model which we shall consider is of the form

Xy = FiSy + v,

St = G¢Si—1 + wy,
ve ~ N(0, V),

wy ~ N(0, Wy),

(7.1)

in which X; represents an observed data vector at time ¢, S; is an unobserved “state” of the
underlying system, {v;, w;} is an unobserved system of mutually independent errors, and
the matrices F;, G;, V; and W; are assumed known. In many cases they are independent
of ¢ but this is not required. Later on we shall also consider cases in which these matrices
contain unknown parameters which are estimated from the data.

Within the framework of (7.1), the main problem is the estimation or prediction of
the unobserved sequence of states {S;} in terms of the observed data points {X;}. The
Kalman Filter is a recursive algorithm, first devised by R.E. Kalman in 1960, designed
to solve this problem. It is the centerpiece of all statistical analysis based on state space
models.

A number of books have presented time series analysis from a state space point of
view. In particular, we refer to Harvey (1989), West and Harrison (1996) and Pole, West
and Harrison (1994).
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7.1 Examples of State Space Models

1. Here is an elementary example to start things off:

Ty = St+’l)t,

(7.2)
St = ¢sp_1 + wy,

in which all variables are scalar. It follows that

Ty — QTi_1 = Vp — PUs_1 + Wy.

The right hand side has all correlations 0 at lags greater than 1. It is therefore equivalent
to an MA(1) process, and this shows that (7.2) is equivalent to an ARMA(1,1) model for
{z+}. This is the simplest example of an ARMA model being recast in state space form.

2. A slightly more complicated model is represented by the equations

Ty = S1,¢ + Vg,
S1,t = S2,¢ + Wiy,

S2.t = S2,¢t—1 1 Wat,

so that
S14 — S1,t—1 = W2t + W1t — W1t—1
and
T
S$1,7 — 81,0 = E Wa ¢ + W1, T — W1,0-
t=1

Thus the {ws .} variables have the interpretation of a random drift. This is the simplest
example of a state space model being used for a nonstationary process, essentially via a
mechanism whereby a key model parameter (sq ;) gets randomly updated in time.

3. A more complicated model, typical of those in Harvey (1989) or West and Harrison
(1996), is to decompose the time series into trend, seasonal and noise components via

Tt =My + T+ U (73)
with the individual components updated as follows:

me = my—1 + Br—1 + N,

B = Br_1 + (s, (7.5)
M—1
re=— Y re_j+w, (7.6)
1=1
P
Uy = Z¢i“t—z‘ + €4, (7.7)
j=1

83



with 7y, (¢, wy and €; representing mutually independent random errors with mean 0. The
interpretation of these equations is as follows: (7.4) and (7.5) represent a trend component
subject to a random drift {/3;}, (7.6) represents a slowly varying seasonal component and
(7.7) shows that the {u;} sequence is being modeled as AR(p). If w; = 0, then (7.6) would
imply Zjﬂigl r¢—; = 0 for all ¢, which is a deterministic periodic component of period M.
Thus, allowing for small errors {w;} means that the seasonal components are changing
slowly with time.

To represent (7.3)-(7.8) as a state space model, define

St:(mt Be T Ti—1 ... Ti—M42 Ut Up—1 ... ut—p+1)T7
we=(n ¢ we 0 ... 0 ¢ 0 ... O)T,

F,=(1 0 1 0 01 0 0),

v=(0 0 0 0 00 0 0)",

all of these being vectors with M + 1 4+ p components, and define the updating matrix to

be
(1 1 0 0 0 0 0 0\
01 0 0 ... 0 0 0 0
00 -1 =1 ... =1 0 0 0
00 1 0 0 0 0 0
G:=100 0 ... 1 0 0 0 0
00 0 0 0 ¢é1 o2 bp
00 0 0 0 1 0 0
\0 o 0 0 ... 0 0 .. 1 0)

With these definitions, the general model (7.1) reduces to (7.3), as required.

Remark. Tt is also possible to write a general ARIMA process as a state space model,
using ideas similar to the last example. See section 7.4 for details of this.

7.2 The Kalman Filter

Consider the general model (7.1). Suppose we have observed Xj, ..., X;. Our objective
is to obtain the conditional distribution of S, given X1, ..., X;. This problem may be viewed
from either a Bayesian perspective, in which we start off with a prior distibution for Sy
and calculate the successive posterior distributions of Si, ..., S; as data become available,
or from a classical viewpoint, in which the objective is simply to calculate a conditional
distribution within the multivariate normal framework. Both viewpoints are encompassed
by the recursive algorithm known as the Kalman filter, the difference between them being
primarily in the way the recursion is started.
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Our derivation follows Meinhold and Singpurwalla (1983). Before giving this, we
note the following well-known facts about the multivariate normal distribution (see e.g.
Anderson, 1984):

Suppose
Y; ,Ul) <211 E12)]
Y = ~ MVN , . 7.9
(Y2) [(Mz Yor Yoo (7.9)
Here Y7 and Y; are vectors of arbitrary dimension, and MV N denotes the multivariate
nornmal distribution.

Then the conditional distribution of Y; given Ys = y5 is

MV N [,ul + Y1285 (Y2 — p2), T11 — 21222_21221} (7.10)

Conversely, if Yo ~ MV N|u2, X9s] and (7.10) holds, then so does (7.9).

We now use these properties of the multivariate normal distribution to derive the
Kalman filter. Suppose the conditional distribution of S;_; given X = IXy, o, X1}
is MVN[St_l, Pt—l]-

In view of (7.1) we have,
(S¢| XY ~ MV NI[G,S;_1, Ry

where
Rt = GtPt_le + Wt. (711)

We also have E{X;|S;} = F;S;, Var{X;|S;} = V;. Applying (7.9)—(7.10) where we identify

Yl = Xt7

Y2 = St,

e = GSy_1,
Yoo = Ry,

1+ E1222_21(}/2 — p2) = Fi.Se,
Vi1 — L12Y55 Yo1 = Vi,

and making all calculations conditional on X*~!, we find that

Xt t—1 FthAgt—l Vi + F,RFY  FR,
{(&) ‘x } MVN[( P )( LT )l (7.12)
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Now we apply (7.9)-(7.10) a second time, reversing the roles of Y; and Yz, to compute the
conditional distribution of S; given X*~1 U X; = Xt as MV N[S;, P;] where

Sy = G481 + R FY (Vy + FR,FN) ™Y (X, — F,GSi_1),

(7.13)
P, = Ry — R F} (V, + F,R.F) "' FyR;.

Equations (7.11) and (7.13) together are the Kalman filter updating equations.

To start this recursion, i.e. to determine SO and P, there are at least three commonly
used approaches,

(i) Bayesian, i.e. use “prior distributions” that reflect a reasonable state of knowledge
at the start of the observation period,

(ii) In the case where the matrices Fy, Gt, Vi and W, are independent of ¢ and the
whole system is stationary, we might use the stationary distribution of S; to start the
recursion,

(iii) Set So = 0, Py = kI where I is the identity matrix and k is a very large positive
number; this may be regarded as a reasonable approximation to a prior state of ignorance.

7.3 Prediction and Smoothing

So far, we have only considered the case where, after observing Xi,..., X7, we want
to estimate the final state S7. The Kalman filter equations provide a recursive formula for

calculating St and Pr, respectively the conditional mean and the conditional covariance
matrix of S given XT = { X1, ..., X7}.

However, there is no reason why we should restrict our objectives to estimating St.
We may well want to estimate S; for some other value of ¢, given XT. If ¢ > T this is
the prediction problem, while if 1 <t < T it is usually known as the smoothing or inter-
polation problem. These problems have the same kind of structure as that for estimating
ST, in the sense that the joint distribution of the observed and unobserved quantities is
multivariate normal, and therefore the problem reduces to obtaining recursive formulae for
the conditional mean and the conditional covariance matrix of the unobserved quantities
given the observed data — once the conditional means and conditional covariance matri-
ces are known, it will follow from the multivariate normal theory that all the conditional
distributions are also multivariate normal.

Accordingly, let ST,t and Pr; denote, respectively, the conditional mean and the
conditional covariance matrix of S;, given X7. For the case when ¢t = T, we shall continue
to write S'T,T = S'T and Prr = Pr, as previously. The derivations are quite different in
the cases t > T and t < T, so we consider them separately.

Throughout this section, we continue to assume that the matrices F;, G, V; and W,
are known for all ¢ (including, for the prediction problem, ¢ > T). In many cases, these
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matrices will be independent of ¢, so this does not represent any extension of the preceding
assumptions. In any case, if these matrices are not pre-specified, the problem becomes one
of estimating unknown parameters, which is the subject of section 7.4.

t > T: The Prediction Problem
This is done by induction on ¢, noting that the case t = T is already solved.

Suppose t > T and we know S'T,t_1 and Pr;_1. The equation
St = GtSt_1 + wy

leads to the calculations ) .
St = G¢Sti1,

r (7.14)
Pri=GiPri 1G; + W,

(7.14) is a recursive formula for expressing ,SA’T’t and Pr; in terms of ,SA’T,t_l and Pr;_q,
and therefore allows us to compute these quantities for all ¢ > T.

As an extension of this calculation, suppose our actual interest is in predicting X,
rather than S;. By (7.14) and the formula

Xy = FiSt + v,
we are led to conditional distribution
(X4|XT) ~ MV N[F;Sr+, F;Pr FT + V4. (7.15)
In particular, if t = T + 1 then Pr; = Rr41 by (7.11), and in this case (7.15) reduces to
(Xr11|XT) ~ MV N[Fr1Gr 4157, FriaRriaFio, + Vo). (7.16)

Equation (7.16) is of particular importance because this is the basis of the prediction
error decomposition for writing down the joint density of (X7, ..., X7) for any T, which is
important in parameter estimation (section 7.4).

1 <t <T: The Smoothing Problem

Now suppose we are interested in going back through the existing data to compute
updated estimates of S; for 1 < t < T, using the full data set X7. Our approach in this
case 1s backwards induction: the case ¢t = T' is known already, and we successively compute
STt and Pr, in terms of ST t+1 and Prqq, foreach t =T — 1, T — 2 and so on down to
t = 1. The precise formulae are

ST,t =5, + P (gT,t+1 - Gt+1§t),

. (7.17)
Pry =P, + P}(Pry41 — Ret1) P,
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where S’t = S’t,t and P; = P;; are the conditional mean and covariance matrix from the
“forward” part of the Kalman filter algorithm, and

P} = PGy R (7.18)

Proof of (7.17)

The proof is in two parts. First, we show how to compute the conditional mean and
covariance matrix of S, assuming that S;y; is known (as well as X?).

This is another application of (7.9) and (7.10). Conditionally on X*, and using the
formula Si11 = G415t + wiy1, we have

S, S, ) ( P, PGT )}
~ MVN 5 s T
<5t+1 ) [(Gt+15t Gy Ry

Applying (7.10), we deduce that the conditional distribution of S; given X* and Sy is

MVNIS; + P,GT, | R .Y (Stev1 — Gi1S), Po — PG R Giy1 P

Q * G * *T (719)
:MVN[St + Pt (St_|_1 - Gt+1St),Pt - Pt Rt+1Pt ],

using (7.18).

Remark 1. The conditional distribution is the same if we condition on X7 and
S¢r1. The reason is that S; and {X;i1,..., X7} are conditionally independent given
St4+1: in other words, there is no additional information about S; if we know the whole of
Sii1, X¢41, ..., X7 instead of just S;y1 (as well as X'?).

Remark 2. Suppose we are interested in generating a Monte Carlo simulation of the
entire sequence (Si, ..., S7) conditionally on the observed data X T This is important for
simulation-based Bayesian procedures (section 7.5). Equation (7.19) shows how to do it:
first generate Sg ~ MV N[Sy, Pr], then successively generate Sy_y1, Sp_s, ..., S1 from the
conditional distribution of S; given S;,; and X7, which by Remark 1 is the same as (7.19).

Now we come to the second part of the derivation of (7.17). This time, the entire
calculation is conditional on XT. We use the converse part of (7.9)—(7.10), identifying Y;
with S; and Y3 with S;11. In the notation of (7.9), we identify

= S’T’t, (7.20a)

Y11 = Pry, (7.200)

e = STe41, (7.20c)

Y92 = Priia, (7.20d)

p1 + S12855 (Va — pia) = Se + P (Sev1 — Geg1Sy), (7.20e)
11— 219855 8 = Py — PYRea P (7.20f)
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From this we deduce, successively, from (7.20e) that ¥15%5, = Py, from (7.20b), (7.20d)
and (7.20f) that

Pry— P! Pry 1 P/" = P,— PRy P,

which gives the second part of (7.17), and finally from (7.20a), (7.20c) and (7.20e) again
that X X R X
St+— PSti141 =St — P G1415%,

which leads to the first half of (7.17), so concluding the proof.
7.4 Estimation of Unknown Parameters

In practice, the matrices F;, G, V; and W; may not be known in advance. It is possible
that they depend on other parameters, which we may need to estimate. For example, when
taking the ARMA (p, q) model and rewriting it in state space form, the ARMA parameters
@15y Gp, 01, ...,0, appear as part of these matrices. The general structure would be to
write

F, = F,(¢)
Gy = Gy(¥)
Ve = Va(9h) (r21)
Wi = Wi (¥)

in terms of a finite-dimensional vector of parameter 1, and to incorporate maximum like-
lihood or Bayesian estimates of 1 into the Kalman filter procedure.

As we have already seen in Chapter 4, there is a general technique to do this based on
the prediction error decomposition summarized in equation (4.5). This depends on being
able to calculate the conditional mean and variance of X; given X, ..., X;_ for any ¢ > 1.
However, writing ¢ in place of T+ 1, (7.16) gives the answer to that, and so may be fed
directly into (4.5). As we saw in Chapter 4, this method is often used to estimate the
parameters of ARMA processes. Harvey (1989) has much further detail on this.

Once we have the likelihood function given by (4.5), it is possible to proceed by max-
imum likelihood estimation, this being the approach that Harvey (1989) recommmends.
In that case we simply write (4.5) as a function of ¢ and minimize numerically, using
any of the standard numerical procedures for unconstrained function minimization. The
alternative is a Bayesian approach, as advocated by West and Harrison (1996) amongst
others, but in this case also, the first step is to obtain the likelihood function.

As with the Kalman filter itself, there remains the problem of how to start the Kalman
recursion. In this context any of the three solutions (i)—(iii), at the end of section 7.2, may
be used. From a non-Bayesian perspective, the most satisfactory solution is (ii), i.e. use
the stationary distribution of the process as a start-up distribution. However, this may
require some calculation, and does not work at all when the process is not stationary. In
that case, some variant of (iii) is usually the preferred solution.
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7.4.1. ARIMA models with missing data : the Kohn-Ansley approach

For the remainder of this section, we describe in some detail the approach of Kohn
and Ansley (1986), which is probably the most comprehensive treatment of parameter
estimation for ARMA and ARIMA models, which has the additional benefit of allowing
missing data to be treated as part of the same general structure. The essential idea is
to show how the Kalman filtering equations can be used to calculate an exact likelihood
function for any ARIMA model subject to the usual stationarity conditions. Note, however,
the phrase “an exact likelihood” rather than “the exact likelihood” — one of the points
of their paper is that the likelihood function is not uniquely defined in the case of a
nonstationary process, but in this case they proposed a solution which is equivalent to one
adopted on similar contexts in such diverse areas as random effects modeling and spatial
statistics, and which also has the advantage of an appealing Bayesian interpretation.

The basic model adopted by Kohn and Ansley is of the form
®(B°)$(B)VE VY, = ©(B*)0(B)ey, (7.22)

where s is the period of the seasonal effect and

P
®(B)=1-) &;B,
j=1
p
j=1
Q
OB)=1-) ©;5, (7.23)
j=1
q
0(B)=1-) 0;B7,
j=1
V=1-B8,
Vy=1-B®

With slightly different notation, this is equivalent to the general seasonal ARIMA
model considered in chapter 4. The assumptions are:

1. The roots of ® and ¢ lie outside the unit circle in the complex plane.
2. € ~ N(0,0?) independently for each t.

3. We observe Y; at time points t =t <ts < ... <ty =T.
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Let Uy = V4 VY, so that {U;} is a stationary seasonal ARMA process of nonseasonal
orders (p, q) and seasonal orders (P, Q), and define also D = d+sds, r = p+sP+D. Then
it is possible to define operators §, v and ¢, and associated coefficients {6;}, {v;}, {#;}, by

D
§(B)=VEVi=1-) 4B,

v(B) = ®(B*)¢(B)d(B) =1 - ZVJ'BJ} (7.24)
q+s@Q

v(B) = ©(B9(B) = Y 4,5

so that we can write Y; in two equivalent ways as

D
Yo =D 0¥+ U (7.25)
j=1
or
T q+sQ
o= vYij+ > ey (do=1). (7.26)
j=1 j=1

The unknown parameters may be represented as o2 and o, where

o = ((I)l, ceey ‘I)p, ¢1, ceey (bp, @1, ceey @Q, 01, ceey Gq) (727)

The initial discussion uses (7.25) to represent the variables {Y;} in terms of a stationary
sequence {U;} for which the joint distributions are well defined. Let n = (Y1_p, Ya_p, ...,
Yy)T. Then by successively applying (7.25) to t = 1, t = 2,..., we can write

Y,=aln+ 2, t>1, (7.28)

where a4 is a vector of constant coefficients and Z; is some linear combination of {U,, 1 <
s < t}. Defining Y = (Y1,...,Y7)T, Z = (Z1, ..., Z7)T and A to be the matrix with rows
al', 1 <t < T, we may also write (7.28) in vector-matrix notation as

Y=An+2Z, Z~ N(0,0*V(a)), (7.29)

where A is a T'x D matrix of known coefficients, 7 is a D x 1 vector of unknown observations
and V() is some known (in principle, explicitly calculable) T'x T' covariance matrix whose
entries depend on the unknown parameters .

The discussion so far implicitly assumes that there are no missing observations. How-
ever, even in the case with missing observations it is still possible to write each observed
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value Y;; as a linear combination of {Us, 1 < s < t;} together with a linear function
of . Therefore, the representation (7.29) still holds, the only difference being that the
dimension of Y is now N, the actual number of observed values, rather than the nominal
length of the series T. We then have that A is a N x D matrix; it is possible that A is
of rank D’ < D, but in that case, we eliminate unwanted components of n and write the
model again in the form (7.29), but with 7 now of dimension D' and A a N x D’ matrix
of rank D’.

7.4.2. A digression: Marginal likelihood, restricted likelihood, integrated likelihood and
Bayesian statistics.

The model (7.29) is of a structure that arises in numerous different statistical contexts.
For example, in spatial statistics it is sometimes known as the universal kriging problem
(Cressie 1993) — here An represents the deterministic component and Z the random
component in some spatially distributed set of observations, but our interest is very often
in the parameters o2 and o which govern the random component. Many models for
random effects in linear models also reduce to equations of the form (7.29) where the
parameters o2 and o need to be estimated. In most of these context, i represents a set of
unknown nuisance parameters whereas in the present context, it is really a set of nuisance
observations rather than parameters, but since we have no well-defined model for those
observations, there is no practical distinction between the two problems.

One solution to (7.29) is by maximum likelihood. If we abbreviate V(«) to V and
write the joint density of Y in the form

1

2\—N/2(17|-1/2
(2r0?)~N/2|y| /exp{—2a2

(Y — Ap)TV—1(Y - An)} : (7.30)

and then maximize successively with respect to 1, o2 and «a, we find

i = (ATV=1A)" ATV 1y, (7.31a)
_ANTV-1(V _ AH

and then choose o to maximize the resulting expression (7.30) when # and 62 are substi-
tuted for n and o2.

Unfortunately, there are various disadvantages of this solution, the most obvious of
which is apparent when « is known: in that case (7.31b) gives an estimate of o2 which is
known to be biased, the correct divisor being N — D’ rather than N.

A second solution is the restricted mazximum likelihood (also called reduced mazimum
likelihood) solution, usually abbreviated to REML. This was introduced by Patterson and
Thompson (1971) in the context of random effects linear models. We assume the matrix
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A is of rank D’: suppose it is possible to decompose Y into two components, a D’'-
dimensional component in the column space of A, and an orthogonal component BY,
where B is (N — D') x N and BA = 0. Then the distribution of BY = BZ is independent
of 7, and may be used to define a likelihood of (02, a) which may be maximized directly
to obtained the so-called REML estimates. In a different context this is also known as the
marginal likelihood solution (Kalbfleish and Sprott 1970) and it is from the latter point of
view that Kohn and Ansley introduce the problem.

Before stating the REML solution, we introduce a third solution, which makes clear
the connection with Bayesian statistics. Suppose we introduce a flat prior density for 7, of
the form 7(n) = 1 for all . The objective is then to integrate out (7.30) with respect to
n, leaving a function of 02 and « alone. If we again define /) by (7.31a), we have the sum
of squares decomposition

Y —An)"VHY — Ap) = (Y = AR)"VHY — Af) + (n— 7)) T ATV T A(n — ),
and we also have

1 A _ A , B
/exp {—@(n —)TATV T A(n - n)} dn = (2na®)P 2| ATV L AV2,

Putting the pieces together, we get a likelihood for (02, ) of the form
/ 1
(2mc?) "NV =D)/2|y|71/2| ATy ~1 4|V 2 exp {—W(Y — ATV Y - Aﬁ)} . (7.32)
g

Note that if « is treated as known and (7.32) maximized for 02, we get the correct unbiased
estimator, with divisor N — D’ instead of N.

As an alternative form of this calculation, suppose we take prior distribution n ~
N(0,kIp/), where Ip: is the D’ x D' identity matrix and k is some large constant. Ignoring
a constant component of the density, this is m(n) = exp{—nTn/(2k)}. Then the same
calculation leads to a marginal density of Y (after multiplying the density of Y by = (n)
and integrating out n) which may be written as

9, 11/2
(27TO'2)_(N_D,)/2|V|_1/2 ATV_1A+ O-—Id
o ok (7.33)
exp Y -ApTVTI(Y -An) 09
202 2k |-

Here 77 is the “Bayes estimator” of 7, which is

n= - 3

(ATv—lA N ID>‘1 ATy -1y
o2 k ’

g
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The proof of (7.33) relies on the algebraic identity

(Y — ApTv-1(Y — Apg) N n'n
k

0—2
Y — AR)TV-YY — A7) iT# o (ATVIA Ip\ ! 3
:( 7) - ( 77)+77k77+(n_n)T( g _}_?D) (n — 7).

o

(7.34)

The formula (7.34) may easily be checked by expanding out as a function of 7.

As k — oo, we have 7 — ) = O(1/k), therefore the solution (7.33) differs from (7.32)
by O(1/k), and in particular, (7.32) arises as a limiting form of (7.33) as k£ — oc.

Strictly speaking, either (7.32) or (7.33) should be regarded as an integrated likelihood
solution rather than a formal Bayesian solution, because we have not introduced any prior
distribution for (02, ). However, if we were to introduce a prior distribution for (o2, @),
independent of that for ), then a suitable solution would be to define (7.32) or (7.33) as an
marginal likelihood for Y after removing the dependence on 7, which may then be treated
as a Bayesian inference problem for 02 and o alone — in other words, we multiply the
marginal likelihood by the prior density of (62, ), and then normalize that expression to

obtain the posterior density of (02, c).

Now we return to the REML solution. Recall that this is based on the density of
BY, where B is a (N — D’) x N matrix such that BA = 0. The key result is due to
Harville (1974), and states: modulo a normalizing constant, this density is given by (7.32).
This result is invariant to the precise specification of B, which only affects the normal-
izing constant, and which is of no relevance for either maximum likelihood or Bayesian
calculations.

This result therefore shows that the marginal likelihood or REML solution, and the
integrated likelihood or Bayesian solution with 7(n) = 1, all lead to the same solution
(7.32). The proper prior n ~ N(0,kIp) also leads to a solution which differs from (7.32)
by O(1/k), and therefore is effectively equivalent if k is chosen large enough.

Kohn and Ansley (1986) did not refer directly to REML estimation or Harville’s result,
but they developed the mathematics of their model in an earlier paper of theirs (Ansley
and Kohn 1985), which includes a proof that the integrated likelihood solution based on
n~ N(0,kIp) differs by O(1/k) from the marginal likelihood solution.

7.4.3. Representing an ARIMA model as a state space model.

There are numerous variations on the basic method of representing ARMA or ARIMA
models in state space forms — for example, the representation due to Kohn and Ansley
(1986) is different from that of Harvey and Pierse (1984). We follow Kohn and Ansley
here.
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The starting point is equation (7.26). Let f = max(r,q + sQ + 1) and let S; =
(St(l), e St(f)) be the f x 1 state vector whose components are

S;gl) = Y;fa
q+sQ

St(J) ZVZYt 14+75— z+ Z ¢z€t 14+75—1
1=75—1

it being understood that all coefficients v; and 1; outside the range of their definition are
0.

Define an f x f matrix F' and f x 1 vectors g and h by

12 1 0 0 ... O 1 1

Vs 01 0 ... 0 U1 0

v3 0 0 1 ... 0 V2 0

F=| . . . . . |, g=| . |, nr=|.
l/f_l 0 0 O 1 ¢f—2 0

ve 0 0 0 0 Wit 0

Then r
Y, =h"S;,
t ! (7.35)
Sir1 = FS; + gegqa.
Proof of (7.35)

The first equation is obvious, so we concentrate on the second. For j =1,

q+s@Q
1
St(.|_)1 = Vlift ZVZY:‘,—H it Z ¢16t+1 i+ €41
=2 =1
q+sQ
= ZVZY;H—I i+ Z ¢16t+1 I
= }/‘t+17
as required.
Now consider the j'th component, 7 > 1:
St(f}—)l _ VjS(l) + S(j+1)
q+sQ
_VJY;+ Z Vz}/t—f-J it Z quet—m i
1=7+1 =7
q+sQ

= ZV'L}/t-I-J it Z ¢z€t+3 i
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as required. These equations include the case j = f if we note that v; = 0 for 2 > f and
; = 0 for ¢ > f. With that, the proof of (7.35) is complete.

7.4.4. Limiting forms of the prediction error decomposition and the Kalman filter as
k — oo.

We continue to follow Kohn and Ansley (1986). Assuming the prior distribution
n ~ N(0,kIp:), define innovations {e(j;k), j=1,...,N} by

e(L k) = Yy,
6(‘7; k) = Yt’j - E{Ytg | Y;‘;l? "‘7Y;}j_1}7

and also let
R(j; k) = Var{e(j; k) }.

Kohn and Ansley show that there exist limiting quantities 6§0)7 Rgo)’ R§-1) such that
Gk =10 (L
7 7 k bl
1
R(j; k) = kR + 0?RY + 0 (E) :

and, moreover, there are only D’ values of j for which Rgl) # 0. The limiting marginal
likelihood as k — oo is then given, modulo a constant, by

N, i N, (0)?
o2(N=D") R "€xXpq — — ¥

11 202 2« RO (

Jj=1 J=1"%

where H' and Z' mean respectively product and sum over all 5 values for which Rg-l) = 0.

We now define the modified Kalman filter algorithm, whose specific purpose is to
handle directly the limiting case as k — oo in the ordinary Kalman filter. Let S’T;t(k) and
Pr.i(k) denote the conditional mean and conditional variance of Y; given {Y;,, t; < T},
analogously to section 7.3 except that the dependence on k is made explicit. It is possible
to write the initial state of the system in the form

So = Mn +&, (7.36)

in which M is some f x D' matrix and & ~ N¢(0,02V;(a)) for some f x f matrix Vg ().
The initial conditions are of the form

510;():0, Po,()(k) :kMMT'f‘O'z‘/g,
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and there is a representation of the form

N N 1
Sra0) =502 +0 (1),

1
Pry(k) = kP&) + 0®PY) + 0 <E) :

where S'Z(FO;%, P}lz and P}?z do not depend on k. The modified Kalman filter is as follows:
Step 0 (initialization). Set

S0-0. AQ-auMT, R -

Steps 1-5 are repeated for t =0, ..., T — 1.

Step 1. Set
St(gb)ﬂ = FS’,fgg),
Pt(;ill = FPt(;PFT,
Pt(;(t)zl-l = FPt(;g)FT +99".

If Y; 11 is missing, then perform Step 2. Otherwise go to Step 3.

Step 2. Set

gt(—?-)l;t—i—l = Sfé,?—i—la

1 1
Pt(+)1;t+1 = Pt(;t)+17
0 0
Pt(+)1;t+1 = Pt(;tz-l-

Return to Step 1.

Step 3. Since Yiy; is observed, t + 1 = t; for some j.

tit+17
R = nTP) 1 h,
R = nT P, h.

€§~0) = Ytj — hTS(O)

If R§-1) > 0 go to Step 4, otherwise go to Step 5.
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Step 4.

1 0
Pt(;tllhﬁé :

4(0 4(0
St(—i-)l;t+1 = St(;t)—}-l +

(v 7
R;
1 1
(1) (D) Pt(;tzi-lhhTPt(;tzi-l
Pt+1;t+1 - Pt;t+1 - 1) ’
R;
1 1 0 1 0 0 1
PO _ p® Pt(;tzrlhhTPt(;tzrle : _ Pt(;tzrlhhTPt(;tzrl B Pt(;tzrlhhTPt(;tzrl
t+1;t+1 - t;t+1 2 (1) (1)
R R; R;
Return to Step 1.
Step 5.
(0) (0)
0 _ g0 Bunhy
t+1;t4+1 — ~tt+1 (0) )
Rj
1 1
Pt(+)1;t+1 = Pt(;tzrp
0 0
p©  _ p© P, t(;tzdhhTP t(;t2|-1
t+1t+1 = L1 — ©
Rj

Return to Step 1.

In most cases, Pt(;i) becomes 0 for a fairly small value of ¢; thereafter, it remains 0,
and the modified Kalman filter is identical to the ordinary Kalman filter.

The paper by Kohn and Ansley also describes modifications of the prediction and
smoothing procedures of section 7.3, to allow for direct calculation of the limiting distri-
butions as k£ — oc.

7.5 Modern Bayesian Approaches to State Space Modeling
7.5.1. The Gibbs sampler and Hastings-Metropolis algorithms

Much modern Bayesian statistics relies on Markov chain Monte Carlo (MCMC) al-
gorithms to obtain simulations from the posterior distribution of a statistical inference
problem. The idea is that, in the absence of analytic solutions to Bayesian problems, we
will try to construct a numerical solution by Monte Carlo simulation. Markov chains enter
the discussion because, in many cases, the most convenient way to simulate a posterior
distribution is to construct a Markov chain whose stationary distribution can be proved
to equal the desired posterior distribution. Once such a chain is constructed, it is run for
a sufficiently large number of iterations that its marginal distributions can be assumed
to approximate the posterior distribution required. What constitutes a “sufficiently large
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number of iterations” is a difficult question which we shall not get into here, but we shall
describe the two most commonly used forms of MCMC algorithm, the Gibbs sampler and
the Hastings-Metropolis algorithm. For further reading on MCMC methods, the books of
Gilks et al. (1996) and Gamerman (1997) are recommended, or the recent review paper
by Brooks (1998).

The Gibbs Sampler.

The algorithm now known as the Gibbs sampler was first proposed in its present form
by Geman and Geman (1984), though there were a number of precedents for the basic
idea. Suppose we want to simulate a K-dimensional random variable (Xq, ..., Xx) with
density g(z1,...,zx). Define the conditional density of X}, given {X;, j # k},

9(T1, ey Th—1, Ty Thot 15 -+, TK)
/ ! °
fg<x17 sy Lh—1, Ly Tht-1y -+ xK)dxk

gr(zk | 5, J#Fk) =

The situation when the Gibbs sampler works particularly well is when each of the marginal
densities gi is easy to draw a Monte Carlo sample from (for example, because it is a
standard density such as normal, gamma or beta), but the joint density of all K random
variables is not. In that case, we proceed as follows:

Step 1: Define arbitrary Xfo), ooy XI(?) and set n = 0.
Step 2: Generate successive random variables
n+1 n n n
X g x$ xM, L x W,

n+1 n+1 n n
XEH g | X XX
X?(’n+1) ~ gs(- | Xl(n+1),X2(n+1), ...,Xg—%)),

X}(-(T-L—i—l) ~ gK(' ‘ X{n—}-l)’XQ(n—H)’ ...,X}(—;ljll)).

Step 3 Set n =n + 1 and return to Step 2.

The iteration proceeds until n is considered large enough both to achieve convergence
and to generate a large enough sample of values. Usually some initial number ng iterations
are treated as a warm-up or burn-in sample and discarded, and then the process is repeated
for a further n, iterations, which are treated as a sample of vectors from the joint density

1.

It should be noted that the algorithm does not in any way depend on the assumption
that each X be scalar — the key point is that there should be a partition of the vector
X into subvectors X} such that each X3 may be sampled from directly.
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A typical application of the Gibbs sampler in Bayesian statistics would arise if we
observe Y ~ f(y;01,...,0k) where 61, ...,0 are parameters, and we have a prior density
(601, ...,0k). Then the posterior density is of the form

7-‘-(917 ey HK | Y) = 07'('(91, 79K)f(Y’ 91) ""QK)’ (737)

where the normalizing constant C is chosen to make the joint density (7.37) integrate
to 1. Except in cases admitting a conjugate prior, exact calculation of C' may require
complicated numerical integration beyond the scope of most computer packages.

In many cases, however, it is possible to define the prior density in a hierarchical way so
that the prior for each parameter fy, conditionally on all the other parameters {6;, j # k},
is of a conjugate form. In this case, the Gibbs sampler is a very natural solution: we sample
successively from each 6, using the conjugate form of posterior distribution, and repeat
the whole process for enough iterations to guarantee sufficient coverage of the full joint
posterior density.

The Hastings-Metropolis algorithm

An alternative MCMC algorithm applies in cases where it is not possible to apply
the Gibbs sampler because there is no way to break up the random vector X into sub-
components for which exact conditional sampling is possible. The original version of the
algorithm was given by Metropolis et al. (1953), and was reworked into its present form
by Hastings (1970).

In the following discussion, we shall suppose that X is an arbitrary random vector
with density g(z). As with the Gibbs sampler, the application in Bayesian statistics arises
when X is identified with some parameter vector 6 and g is the posterior density of 6 given
some observations Y. Thus it is typically the case that the analytic form of g is known up
to an unknown normalizing constant.

As with the Gibbs sampler, the algorithm typically starts from some arbitrary initial
value X(© and proceeds by iteration. Suppose after n iterations we have a current value
X (™) We proceed as follows: generate a “trial value” X’ from some density q(X (n) 4! )
such that [g¢(z,2')dz’ = 1 for all 2/. The choice of trial density ¢ is almost arbitrary.
Once X' is defined, however, we perform a second independent randomization to decide
whether to accept or reject it. The probability of acceptance is set to be

. g(X")a(X", X ™)
min {1, 2 (X0 (X, X1 } . (7.38)

If we accept, then set X (1) = X’ otherwise X ("*1) = X (") A key point of the algorithm
is that (7.38) can be calculated even though the density g is known only up to a normalizing
constant, because the constant cancels from the numerator and denominator of the ratio

9(X")/g(X ™).
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Sketch of proof.

A complete proof of the Hastings-Metropolis algorithm involves the theory of
continuous-state Markov chains, which lies beyond the scope of the present discussion (see
Meyn and Tweedie 1993 or Tierney 1994 for details). We can, however, give the main
idea, which is to show that if the Markov chain {X (™} is defined by the algorithm, g is
the density of an invariant measure (in other words, if g is the density of X (™) then it is
also the density of X(»+1)), The remainder of the proof, which we shall not give, involves
checking continuous-state versions of the irreducibility and aperiodicity conditions which
are used in proving convergence of discrete-state Markov chains.

Suppose, then, that X(™) has the density g. For any z in the domain of g, let

Ao ={ys BUIED 4 )

9(x)q(z,y)

and write AS for the complement of A,. The density of X (n+1) evaluated at g, is then

g(ﬂ?)/A q(z,y) - {1 — M}d

. 9(=)q(z,y) (7.39)
g(2)q(z,y) '
+/Awg(y)q(y,x)dy-i-/A%g(y)Q(y,ﬂ?)-md%

in which the first line represents the probability that X () = z and any proposed move is
rejected, and the second that X (™ = y but the chain moves from y to z at time n + 1.
However, on rearrangement, (7.39) becomes

9(2) /A a(e,9)dy + g () / a(e, y)dy = g(a),

c
x
as required.

So far, we have given no guidance to the choice of a suitable trial density q. Very
many possibilities could be considered, but among the most frequently used in practice are

(i) The independence sampler, in which q(z,y) is some density go(y) independent of z.
In Bayesian analysis, this is sometimes applied with a normal approximation to the
posterior density used to determine gq.

(ii) The random walk sampler, in which ¢(z,y) is of the form go(y — x) for some density g
— in this case, successive steps of the sampler follow a random walk where the (vector)
step length has density qo. For example, one possibility is to sample uniformly over a
box of the form |y; — z;| < h; for all i, where y; and z; are the ith components of the
vectors y and x and h; is a bound on the maximum step length. This still leaves open
the choice of the h; parameters, but they are very often chosen to satisfy a rule of
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thumb that the overall acceptance rate should be between 15% and 50% (Gilks et al.
1996, page 55). A further simplification in the case of a random walk sampler with gg
symmetric about 0 is that g(x,y) = q(y, x) for all z,y, and in that case the gs cancel
in (7.38). This case is sometime called the Metropolis algorithm to distinguish it from
the slightly more complicated asymmetric case introduced by Hastings.

In practice, it is quite common to combine the Gibbs sampler and Hastings-Metropolis
algorithms, possibly with other Monte Carlo generation procedures, into a single algorithm.
Tierney (1994) gives extensive coverage of such hybrid procedures. One idea, for instance,
is to break down the vector X into subcomponents Xj, ..., X, using Gibbs sampling to
update one component at a time, but when exact analytic procedures are not available
for the subcomponents, to update them using some version of the Hastings-Metropolis
algorithm.

7.5.2. The inverse Wishart prior

One specific idea used in Bayesian inference about covariance matrices is the inverse
Wishart distribution, which is the (matrix) inverse of the Wishart distribution, which is a
multivariate generalization of the x? distribution. We follow West and Harrison (1996), p.
601.

If V is a symmetric p X p random positive definite matrix, then we say that V has

an inverse Wishart distribution with m degrees of freedom and p X p symmetric positive
definite centering matrix A (notation: V'~ IW|[m, A]) if the density of V is of the form

F(V) o [V|7P~™/2 exp {—%tr(mAV_l)} . (7.40)

Some properties of the inverse Wishart distribution are:
1. E{v-1} =4"%
2. If m > 2 then E{V} =mA/(m — 2).

3. If v; is the jth diagonal entry of V, then ’Uj_l ~ Gam(m/2, ma;/2) when Gam(c, )
denote the gamma distribution with density proportional to z®~le=52.

4. If m is integer, then V~! may be given by % Z;n:1 ZJ-ZJT where 74, ..., Z,, are inde-
pendent with common distribution MV N[0, A~1].

Suppose X1, ..., X,, are independent p-dimensional vectors with common distribution
MVN][0,V]. (The whole analysis is easily extended to the case where the observations
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have a common unknown mean p, but we shall not need that case here.) If V has the prior
distribution IW[m, A], then the joint density of V and Xj, ..., X,, is proportional to

1 1
V[P~ 2 exp {—itr(mAv—l)} VT2 exp {—5 > X,-TV‘lX,}

7

(7.41)

—%tr{(mA + Y X XDV

(2

which uses the identity X V=1X; = tr(XTV~1X;) = tr(X; X} V1) which in turn follows
from the identity tr(AB) = tr(BA), which is true whenever the matrices AB and BA are
both defined. Comparing (7.41) and (7.40), we see that the posterior distribution of V'
given Xy, ..., X,, is of the form

Iw
m +n, -

(7.42)

7.5.3. Bayesian analysis for the state space model.

Suppose (7.1) holds with F; = F, Gy = G, V; =V and W; = W, all independent of ¢,
and continue to assume for the moment that F' and G are known. (The case where they
are unknown is considered at the end of this subsection.) The problem is too complicated
for a direct conjugate-prior Bayesian analysis, but by combining the inverse Wishart prior
with the Gibbs sampler, we can construct a Bayesian analysis, as follows.

Suppose V ~ IW[m,, A,], W ~ IW[m,,, Ay], independently of each other and of all
the observations. We apply a Gibbs sampler in which each of V, W and S = (Sy, ..., ST)
is updated conditionally on the other two. In more detail, this means iterating among the
following three steps:

Step 1. Suppose V and W are known. We want to generate a Monte Carlo sample
from S, conditionally on V, W and the observed data X7. However, we can do this
using Remark 2 from section 7.3: first generate St using the Kalman filter equations, then
generate Sp_; from the conditional distribution using X7 and Sr, and so on back to S;.

Step 2. Suppose S is known and we want to update W. We can compute the values
of we = S5 — GS1, wz = S3 — GSs,..., and so on to wpr = S — GS7_1, and then compute
the posterior distribution of W as

T T

My A + Do WijwW;

Iw T -1, J
Mo + My + 1 —1
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Step 3. Suppose S is known and we want to update V. We can compute the values
of vy = X1 — FSq1, v = Xo9 — FSs,..., and so on to vy = X7 — FS7, and then compute
the posterior distribution of V' as

My Ay + Zf UjUJT
my, + T

W |\m, +T,

Steps 1-3 are repeated as many times as needed. At the end, we compute poste-
rior distributions by averaging over the simulations (after possibly discarding some initial
warm-up sample). As an example, suppose we want the final posterior distribution of St,
taking into account the uncertainty of V' and W. If we denote the conditional expectation
and covariance matrix of Sz, given X7, V and W, by ST(K W) and P(V, W), then the
conditional density of Sy is the normal density with mean S7(V, W) and covariance matrix
P(V,W) — the overall posterior density is obtained by averaging this conditional density
with respect to V and W. In practice this is usually performed by simply averaging over
the sample values of V and W from the Monte Carlo simulation.

Now let us consider the case in which F; = F and Gy = G are also unknown in (7.1) —
assume they may be written F'(¢) and G (1) where 1) is some finite-dimensional parameter
vector. In this case we again update S, V and W successively, but add a Step 4 in which
we also update 9. Assuming a prior density m(¢), independent of the prior distributions
for V and W and of the observations, this fourth step consists of generating an updated
value 9 from the conditional density given (S,V, W, XT), which may be expressed, up to
a constant of proportionality, as

H St, pr St G(w)st 1; )’ (743)

pu(3V) and py(-; W) denoting the densities of v; and w; respectively as functions of
covariance matrices V and W.

In most cases of practical interest, such as those involving ARIMA models using the
representations in section 7.4, the functions F'(¢) and G(%) will be too complicated for
the density (7.43) to be sampled directly. However, this is where the Metropolis-Hastings
sampler comes in: in place of an exact draw from the conditional density of 1), we update
1) using one or several iterations of the Metropolis-Hastings sampler.

7.6 Conditionally Gaussian Dynamic Models

In recent years, there have been many extensions of time series analysis to allow
for such features as nonlinearity, nonstationarity and non-Gaussianity. Although many
different approaches have been proposed, some of the most powerful are based on the ideas
of state space models combined with Monte Carlo analysis to facilitate the handling of
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nonstandard distributions. Conditionally Gaussian dynamic models are models in which a
state space process evolves under Gaussian assumptions as in the Kalman filter, but there
are additional components to the model which give rise to nonlinear or nonstationary
features. A recent paper by Cargnoni, Miiller and West (1997) has outlined many of these
ideas, and we follow that paper here.

Although the application described by Cargnoni et al. is somewhat specialized, we
describe it here as an illustration of the kind of problem this methodology can handle. It
is concerned with data from the Italian school system, in which the focus of interest is the
proportion of students in each grade who either repeat that grade, advance to the next
grade, or leave the system entirely. Data are collected over several grades for a number
of years, so the basic problem is one of time series in which the outcomes are trinomial
variables and with the extra complication of dependence among several parallel time series
corresponding to the different grades.

To introduce some notation, let n;; denote the number of students in grade ¢ in year
t, and let y;1; denote the number who remain in the same grade into year ¢ + 1, y;9¢ the
number who advance to the next grade, and y;3; the number who leave the system. The
vector (Yi1¢, Yiot, Yist) 1 denoted y;;. The natural model is multinomial:

Yit | Ngg ~ Mu(nit;ﬂ'it)a

where m;; = (714, Tiot, Tizt) is a vector of probabilities subject to > ;j Mije = 1 for each 1
and ¢t. In general, we consider a multinomial distribution with » + 1 cells in which the
vector of cell probabilities is m;; = (mis, ..., Ti r+1,¢) — we shall formulate a probability
model for (714, ..., Tir¢) leaving m; 41+ to be defined as 1 — Z;Zl Tijt-

The first step in formulating a model is to define some transformation h from [0, 1]
to the real line — examples are h(m) = logn/(1 — ) or h(w) = 2arcsin /7. Define n; =
(Mitt, --., Mrt) Where m;5e = h(mije), 1 < j < r. Assume the vectors y;; are conditionally
independent for each i and ¢ given 7;;. We assume all the {n;;} for each ¢ are combined
into a single vector 7, which satisfies the state space model

ny = Fif; + vy,

0 = Hi0; 1 + wy,
vy ~ N[0, V]

wy ~ N[0, W]

(7.44)

with F; and H; known, v; and w; independent random errors and unknown covariance
matrices V and W. Also assume some prior density exists for (6, V, W).

The Bayesian analysis of this model consists primarily of drawing a sample from the
posterior distribution of the parameters (n, 8, V, W) conditionally on the data y. As in the
Gibbs sampler, this is broken down into several stages and a sample drawn at each stage
conditionally on all the variables in the other stages:
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(i) Updating 6 given (n,V,W): this uses the Kalman filter, with the backwards se-
quential generation method employed in section 7.5.

(ii) Updating V and W given (n,0): if we assume inverse Wishart priors for V' and
W (independent of each other and of everything else), then the posterior distributions of
V and W, given n and 6, are also of inverse Wishart form. This is analogous to Steps 2
and 3 of section 7.5.

(iii) Updating n given (y,0,V,W): the key point here is that the values of 7, for
different ¢t depend on each other only through the values of 6;, and therefore, if we con-
dition on the entire sequence of {6;}, the posterior distributions of the individual 7, for
t=1,2,...,T, are independent. In other words, it suffices to update each 7, one at a time,
without having to consider the joint distribution of all the {#,} simultaneously — this was
a disadvantage of some earlier attempts to analyze this kind of model by Monte Carlo sam-
pling. As for the details of the sampling, any form of Hastings-Metropolis algorithm would
presumably suffice for the job: Cargnoni et al. in fact used an independence Metropolis
sampler in which they used a normal approximation to the posterior distribution as the
trial distribution for the sampler.

The brief description given here does not reflect all the subtleties of the Cargnoni et
al. procedure. They actually assumed that the values of 7;;, as ¢ varies over the different
grades, are conditionally independent given the corresponding 6;; values, and this allows
for some improvement of the algorithm by separate updating of subcomponents, but the
preceding discussion gives the essential ideas behind their method.

In the actual analysis of the Italian school data, they used the transformation h(n) =
2 arcsin /7 and adopted a model for the {n;;} of the form

Nit = Mt + Vit + Vit

where p; is an overall trend (common to all grades), v;; is a grade-specific component and
v;¢ 18 a random component. They assumed, in effect, a cubic trend in time for y; and a
linear trend for each ~;;, updated through the equations

Pt = pg—1 + Op—1 + €1 + Wy,
0t = 0t—1 + €t—1 + Wst,
€t = €4—1 + Wet,

Yit = Yijt—1 T Writ,
, v

(7.45)

with independent normal assumptions for the error terms wy:, wss, We, woi¢. For iden-
tifiability purposes, with I grades being considered together, the parameters {v;:} were
updated according to (7.45) only for i = 1,...,1 — 1, vy, being defined as — {_1%,5. A
particular feature of their algorithm was the ability to track trends across time of propor-

tions of students in each of the three categories (repeated a grade, moved to next grade,
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left system) either within each grade or aggregated across all grades. However, it seems to
be a whole new set of questions to decide how to verify a model of the structure defined
here.

7.7. Models for financial time series.

Financial time series are series of stock prices, stock price indices such as the S&P
or Dow Jones, spot interest rates, currency exchange rates, etc. All of these types of
series exhibit certain characteristic features which distinguish them from other kinds of
time series and which have led to a tremendous outgrowth of specialized models and
methods. The most popular models subdivide into two classes. Omne of these leads to
models analogous to the ARMA structure of traditional time series models but with the
autoregressive and moving average components acting on the variances of the process, as
well as or instead of the means. These models are grouped together under the heading
ARCH (for autoregressive conditionally heteroscedatic) models. The other kinds of models
are stochastic volatility or SV models in which there is some unobserved process known
as the volatility which directly influences the variance of the observed series. SV models
share many of the characteristics of state space models, hence their inclusion in the present
chapter.

The following discussion is based largely on the superb review chapter by Shephard
(1996), to which we refer for a more detailed account.

7.7.1. Basic facts about financial time series

Nearly always, we analyze the daily returns y; = 100 log(z;/z:—1) where x; is the price
on day t. A number of empirical observations (known as “stylized facts”) seem common
to all series of this type:

e Symmetric distribution about the mean

e Little autocorrelation among the values of y;

e Strong autocorrelation among the values of yZ or |y

e Long-tailed distributions

e Variable volatility: in other words, the local variance of the process changes sub-
stantially across time.

Much of the interest in financial time series stems from the trade in options of various
types. The best known example of an option is the Furopean call option which gives its
holder the right to buy an asset at a given price K on a given date T + v, where T is
today’s date and v is some specified period into the future. The famous theory of Black
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and Scholes (1973) showed how to price an option under the assumption that an underlying
asset S follows a stochastic differential equation of the form

dS = uSdt + 0Sdz, (7.46)

where p is an instantaneous mean return and o is the volatility. By constructing an imagi-
nary riskless portfolio based on continuously trading between the asset S and an alternative
asset which can be borrowed at a fixed interest rate, they contructed a differential equa-
tion for the value of an option as a function of the time to maturity of that option. The
Black-Scholes option price formula shows that the price of an option depends on ¢ but not
on y. This leads to one method of estimating o: one simply observes the actual option
price and solves the Black-Scholes equation to determine o. This is known as the implied
volatility estimate. However, a more sophisticated approach assumes that the volatility is
not constant and estimates it using various models, and our main purpose here is to study
some of these models.

Most models of financial time series are of the general structure of
Yt | Zt Nl:ll'ta O-tz]a (747)

where z; is some set of conditioning random variables (possibly, but not necessarily, lagged
values of {y;}) and p; and o2 are some function of z;. As canonical examples of each of
the two main types, we mention the ARCH model in which z; is equated with V¢!, the
observed series up to time ¢ — 1, and

o’ =ap+ a1yl +..+ apyf_p. (7.48)
The simplest SV model is of the form
Yt | ht ~ N[O, eht], ht+1 =Y + ’Ylht + N, Ne ~ N[O, 0',3], (749)

all the normal random variables being conditionally independent given the underlying
means and variances. The model of (7.49) has a state space form reminiscent of many of
the models considered in this chapter, but with the critical difference that the dependence
of the state variable h; on the observation g; lies in the variance of y; rather than the
mean. The distinction immediately wipes out any direct attempt to analyze the model
through the Kalman filter which has been our main focus in this chapter.

7.7.2. ARCH models.
The simplest ARCH model, ARCH(1), is of the form
Yt = €104, 02 = o+ a1yl 4, t=1,..,T, (7.50)

with ¢, ~ NJ[0,1] (mutually independent). We need ap and «; to be positive to ensure
o > 0. If 3a? < 1 then y? is covariance stationary with autocorrelation function Py (s) =
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of, and in this case y; is leptokurtic (tails longer than normal). The condition 3a? < 1 is
needed primarily to ensure that the variance of y? is finite. Precise conditions for {y;} to be
strictly stationary seem to be harder to pin down but a sufficient condition is oy < 3.5622.

One of the key features of the ARCH(1) and indeed of all ARCH models is that the
conditional distribution of y; given Y*~1 is easily written down explicitly and this allows
us to formulate directly the prediction error decomposition for such a process. This makes
maximum likelihood estimation straightforward and also implies a direct approach to the
forecasting of future values. Pinning down the properties of maximum likelihood estimators
is not so easy — for example, asymptotic normality of the estimators is not easy to prove
though it is known to be true for a very wide class of processes. A more practical difficulty
is that the likelihood surface tends to be flat so that even in this simplest form of the
model, the maximum likelihood estimates of ay and a1 can be quite imprecise.

The ARCH model can be thought of as an autoregressive model in y?. An obvious ex-
tension of this idea is to consider adding moving average ocmponents as well, and this leads
to the generalized ARCH or GARCH class. The simplest such model is the GARCH(1,1),
defined by

Y = €0y, 0 =o+aiyp g+ Porq, t=1,....T. (7.51)

The series {y;} is covariance stationary if aq + 81 < 1. However it is also well defined
(and stationary) if a; + 81 = 1 and this is an important special case known as integrated
GARCH or IGARCH. It corresponds to having persistent shocks in the system.

The simplest estimation scheme for the GARCH(1,1) model uses some initial sample
of observations (say 20) to come up with a crude initial estimate of o2, and then use
maximum likelihood estimation based on the prediction error decomposition.

A generalization of the GARCH(1,1) model is the GARCH(p, ¢) model, in which (7.51)

is extended to lagged terms in y7 ,,...,y7 , and 07 ,,...,07 .

A number of other forms of GARCH model are mentioned by Shephard (1996). These
include:

Log GARCH:

y2 =eZeht,  hy =y 4 y1logyl ;.

A disadvantage of this model is that it may result in y; close to 0 or even exactly 0. A
possible resolution of this problem is to replace v; logyZ ; by 71 log{maxy?Z ;, c} for some
suitable ¢ > 0, but it seems that this idea has not caught on in the finance literature.

Ezponential GARCH:
This is a variant on the log GARCH model in which the equation for h; is replaced
by
ht = 0 +v1ht—1 + g(€t—1), 9(z) = wz + A(|z| — E|z]).
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An advantage of this model over some of the others is that it responds asymmetrically to
shocks. This corresponds to the empirically observed phenomenon that for many assets,
the volatility responds more rapidly to sudden drops in the price than to sudden rises.
The model is stationary if and only if |y;| < 1. One distinction from traditional ARCH
models is that it is possible for p,2(s) to be negative for some lags s. Like the other forms
of ARCH model, the likelihood is easily computed via a prediction error decomposition.
Properties of the maximum likelihood estimates are not easy to establish, but it seems
clear that asymptotic normality holds if |y;| < 1.

Decomposing IGARCH models
This idea works by decomposing both the conditional mean and conditional variance

of y so allowing both persistent and transitory effects to be modeled (the conditional mean
terms being the persistent effects). A typical model is

of = e+ o (yi_y — pe) + Brlof 1 — ),
Mt =W+ phg—2 + ¢(Z‘/t2—1 - 03—1)-
Absolute residuals ARCH

o = ap + a1|yi—1]

Nonlinear ARCH (NARCH)

o7 = ap+ aily—1 — k|7,

k = 0 being the symmetric case, £ # 0 asymmetric.
Partially nonparametric ARCH:

This allows for a nonlinear and empirically determined relationship between o7 and
Y+—1, a simple version being a linear spline representation,

mT m-
of = ap + Zai”[(yt_l =75 > 0)(ye—1 — 75) + Zal_]I(yt—l =75 < 0)(ye—1 — 75),
=0 =0

in which I(-) are indicator functions and (7_.,, ..., 7m) is a sequence of knots typically set
as 7 = Jjy/Var(y).

Quadratic ARCH or QARCH
2 __ 2 *
0 = oo+ oY1+ oyYe—1
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with contraints on the coefficients to ensure o2 > 0. This is another model used to capture
asymmetry.

Threshold ARCH

Taking the asymmetry theme further,

o7 = a0+ of I(yem1 > 0)y7y + a7 Iy < O)yf .

ARCH in mean (ARCH-M)

ye = g(07,0) + eeor, 07 = oo+ ar{ye—1 — 9(07_1,0)}>,
with, for example, g(0?,0) = u, + p1o2. This is intended to reflect a direct relationship

between the level of returns of a risky asset and the level of volatility.
Empirical evaluation of ARCH models

Shephard (1996) illustrated several ARCH models by evaluating them on four financial
time series, two of them consisting of currency exchange rates (yen/pound and Deutsch
Mark/pound), two of stock prices incides (Nikkei 500 and FTSE 100), each running from
1986-1994. He fitted GARCH(1,1) and EGARCH models both assuming the innovations
{e:} are normal, and assuming they have a student’s ¢ distribution with degrees of freedom
v to be estimated. He also compared them with “benchmark” models of i.i.d. normal and
i.i.d. t, variables, the motivation behind the latter being that it would allow for the long-
tailed distributions which are observed in real data, but not for time-series dependence.

The two “benchmark” models were definitively rejected by a Box-Ljung test applied
to the squares of the observations (recall Chapter 4 for a description of the Box-Ljung
and the older Box-Pierce tests). The ordinary GARCH model (with normal errors) passed
this test, but failed one based on the kurtosis of the transformed innovations (a test
of long-tailedness). Only by assuming a GARCH model with t-distributed innovations,
with v typically about 4, was reasonable fit obtained by both tests. Similar results were
obtained for the EGARCH model, in which reasonable fit was obtained only by allowing
the innovations to have a t distribution with small ». Comparing GARCH and EGARCH,
perhaps the most interesting comparison is in terms of the negative log likelihoods achieved
by both models:

Series GARCH NLLH EGARCH NLLH
Nikkei 500 2836 2795

FTSE 100 2595 2593

DM /pound 945.3 942

Yen/pound 1879 1879

Table 7.1. Evaluation of the negative log likelihood for GARCH and EGARCH models
applied to four financial time series, each including ¢-distributed innovations. Results from
Shephard (1996).
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In effect, what the EGARCH model is doing that the GARCH is not is allowing for
asymmetry in the response to shocks, and Shephard commented that this seems to be a
significant effect for all series, commenting that “this ... is a standard result for equities...
(but) it is non-standard for currencies where the asymmetry effects are usually not signifi-
cant”. In fact, based on Table 7.1, I have a different interpretation from Shephard: in the
precise form considered by Shephard, the EGARCH model has two more parameters than
the GARCH model, and taking this into account, only the Nikkei 500 series shows a large
improvement in the log likelihood. It would be interesting to establish to what extent this
effect was due entirely to the data a few days either side of October 19, 1987.

7.7.3. Stochastic volatility

The most popular form of SV model, the log-normal SV model, is based on rewriting
(7.49) in the form
yt = ezexp(hg/2),  hip1 = Yo +y1he + 0, (7.52)

in which e, ~ NT0,1], n; ~ N[0, 07] are mutually independent for all ¢. Some elementary
properties are easy to derive:

(i) {h:} is strongly and weakly stationary if and only if |y1| < 1 and in that case,

2
g
ph =B{h} =" o2 =Var{h}=—"1. (7.53)
1- Y1 1- 1

(ii) If {h;} is stationary then {y;}, being the product of two stationary processes, is too,
and we can compute, for r even,

B} = (e {exn (3 ) }

_ r! N 7“20,2L
_2r/2(r/2)!eXp< 2 T8 )

(7.54)

the odd-numbered moments all being 0. In particular, it follows from (7.54) that the
kurtosis E{y{}/(E{y2})? is 3exp(c2) > 3, proving that the SV model has fatter tails
than a normal distribution.

(iii) The autocorrelation function of y? can be computed as

exp(op77) — 1
7.55
3exp(c?) -1’ (7:55)

Corr{y},y;_,} =

which for small o2 is approximately proportional to v{, as in the ARMA(1,1) model.
Thus the SV model behaves similarly to the GARCH(1,1) model. It is also possible
to calculate

,YS
Corr{logy?, logy? ,} = m. (7.56)
: h
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The derivation of (7.56) uses the representation

logy; = hy +1oge;,  hyyr =0+ y1he + e (7.57)

We now consider several methods of estimating the log-normal SV model:
(i) Generalized method of moments (GMM)

Clearly it would be possible to combine (7.53), (7.54) for » = 2 and 4, and one of (7.55)
or (7.56), to find three equations for the three unknowns 7o, v1 and o7, and then to solve
those equations using sample values of the mean, variance and first-order autocorrelation
of either y? or log yZ, so obtaining method-of-moments estimators. There are, however,
many more variables whose theoretical expectations are computable, so the question arises
of which three to use. GMM methods use a larger number of moment equations than there
are parameters to estimate, typically using a least-squares type of criterion to determine
the best fit between theoretical and empirical moments. However there also seem to be
a number of disadvantages to GMM methods when applied to SV models — in particular,
Shephard remarks that when =, is close to 1, as can be expected to happen for many
financial series with high persistence, the GMM estimates will behave poorly.

(ii) Quasi-likelihood

If we ignore the fact that log €2 does not have a normal distribution, (7.57) has the
form of a standard Kalman filter model and hence can be solved (including the prediction
error decomposition) to form a “likelihood function” for the unknown parameters. This is
known as a quasi-likelihood (QL) because it does not use the correct distribution for the log
€2 variables, but nevertheless, estimation based on maximizing the QL has many desirable
properties, including consistency, asymptotic normality and in many cases an asymptotic
efficiency that is close to 1 relative to the true MLE. The main practical difficulty in
applying QL methods is that the usual asymptotic form for the covariance matrix of the
estimators is not valid and some adjustment must be made. The details of this were worked
out by Harvey, Ruiz and Shephard (1994).

(iii) Estimating the mode of the distribution of {h:}

Clearly, the main difficulty in applying maximum likelihood methods for the SV model
is that the volatility process {h;} is not observed. The QL method gets around this problem
by using the Kalman filter to compute an approximation to E{h; | YT}, but this is not
a true conditional expectation because it is not based on the true distribution of the {e;}
variables. Durbin and Koopman (1997) developed an ingenious alternative approach to
this problem based on a linear approximation to (0/0h:)log f(y: | ht), using the Kalman
filter to solve the resulting approximate linear system. The method leads, in effect, to
the conditional mode of h; given YT, which may then be used to calculate the likelihood
function. Thus one use for this approach is to give another way of computing approximate
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maximum likelihood estimates, but this is not the only use, because independently of which
method is used to estimate the model parameters, having a good reconstruction of the {h;}
process is a useful product in its own right.

(iv) Monte Carlo approaches

Despite the existence of these various approximate methods, most of the recent re-
search has been in and around some form of Monte Carlo estimation technique. All of
these methods are ultimately built around the equation

T
p(ylv-"ayT;’YOv’Ylvas) = /p(hla"'7hT;’YOa’Yl7O-72;)Hp(yt | ht)’ (758)
t=1

p denoting a generic probability density, but direct evaluation of (7.58) using a Monte Carlo
generation of (hq, ..., hy) would be much too inefficient to be applied directly. One idea
discussed by Shephard (1996) is to use importance sampling (Ripley, 1987) as a variance
reduction technique, but this seems to have fallen out of favor in comparison with MCMC
techniques. The key issue in this case is to find efficient algorithms for updating the
sequence {hq, ..., hr}, conditionally on all the other variables in the model, which are both
easy to implement and which will provide a reasonable rate of convergence to the true
conditional distribution.

One idea mentioned by Shephard (1996) and described in more detail by Shephard and
Pitt (1997) is to use an approximate Gaussian density to obtain a good trial distribution
for the Metropolis-Hastings sampler. First, let us rewrite (7.52) in yet another way as

a
yi = €3 exp (7'&) , a1 = oy + 1y, et ~ N[0,1], n ~ NJ0, 072’], (7.59)

and let us compute the conditional distribution of o; given a;—1 and ;1. The joint
density of (a¢—1, @, @sy1) is proportional to

exp {_ (¢ — poe—1)® (41— ¢Ott)2} (7.60)

2 2
2(777 2(777

and the key point is to complete the square with respect to a; in the exponent of (7.60)
so that is the same, up to a constant of proportionality, as

(CVt - Mt)z
exp { 20_?

for suitable p; amd o2. It is readily verified that this is achieved by

2
Ty

1+ ¢2

pr = (ap—1 + apy1), 0t2 =

1+ ¢2
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Next, let us write the joint density of (v, y:) given (az_1, @sy1), up to proportionality, as

(ar — pe)? o yre
eXp =5 - exp (= ) exp (== 7
P

and rewrite the exponent of this, after Taylor expanding e~ around e~ #¢, in the form

(p —pm)® o yP 1 2 3
M BT 0 i o 14 (g — ) + = (on — )+ Ol — ) b
207 9 2ﬂ26 + (o — ) + 2(0% pe)” + O(Jog — we|”)

and if we complete the square with respect to oy in this expression, ignoring the O(|ay —
1t]3) term, we obtain the approximation

*2

O ‘ Og—1, 041, Yt ~ N[,U:;Ut ) (7-61)
where )
1 1 e M
2= T L 2
(o (of 25
* 0_*2 & _ 1 yt2(]‘ + lj’t)e_ut
My t Ut2 2 232 :

The idea is then to use the normal approximation (7.61) to generate a trial step in the
Metropolis-Hastings algorithm, but to use the exact conditional density p(ay | a1, apy1,
y¢) in deciding whether to accept or reject the new value. Thus, although the approxi-
mation (7.61) is a key step in defining an efficient sampler, the actual algorithm is still
faithful to the exact conditional density.

The difficulty with this kind of procedure lies not in the quality of the approximation
(7.61), but in the whole idea of updating the {a;} vector one variable at a time. In many
practical situations ¢ is close to 1; the entire sequence {a;} is highly correlated, and it
is going to take a very large number of single-variable updates before the entire vector
achieves reasonable coverage of its true conditional distribution. Two procedures which
have been proposed for dealing with this difficulty are

(a) Multimove samplers. Return to equation (7.57), and suppose we approximate the dis-
tribution of log € by a mixture of J normal variables with mean-variance parameters
{(m;, s?), 1 < j < J}. Let w; be an indicator varable taking values 1,2, ..., J, so that
wy = j means that ¢ is drawn from N|m;, s?] Conditionally on {w;}, the sequence
of {e:} is normal, and so its conditional distribution given {y;} can be computed us-
ing the Kalman filter algorithm. A secondary randomization then allows the {w;}
to be updated, but the structure of the model is such that each w; is conditionally
independent of all w,, s # t, given €, so the w; variables can be updated one at
a time without any worries about their being highly correlated. This is similar to
the main idea behind conditionally Gaussian dynamic models, mentioned in section
7.6. The difficulty with this method is that we do not know just how adequate the
mixture-of-Gaussians approximation is to the true distribution of log €?.
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(b) Block samplers. The main new idea introduced by Shephard and Pitt (1997) is that
instead of using the approximation (7.61) to update oy one variable at a time, it is
possible to use a similarly motivated multivariate normal approximation to update a
whole sequence of o, ap41, ..., @tk given ay—1, A4 yg+1 and Yy, ..., Yr+k- LThe endpoints
a¢—1 and ayqry1 they call knots, and these are chosen stochastically from one run
to the next. A key decision is the mean number of knots K. At one extreme we
could take K = 1, meaning updating the entire sequence a4, ..., ar in a single step,
using a multivariate normal approximation to the joint conditional distribution given
Y1, ---, y7. However it is unlikely that the normal approximation will work well in very
high dimensions, so this algorithm is likely to result in far too high a rejection rate at
the accept-reject step. The other extreme is represented by K = T', in other words,
update one variable at a time, but as already noted, this is likely to be inefficient be-
cause of high correlations among the individual o variables. Identifying an “optimal”
K seems likely to be a tough theoretical problem, but Shephard and Pitt suggest that
it may not be too important in practice. They argue that good efficiency gains are
obtained across a wide range of K values and recommend block sizes between 50 and
500 in practice. They also emphasize the main advantage of random block sizes —
because there will sometimes be short blocks, there will be some Metropolis steps for
which the acceptance probability is high, and this help to avoid the algorithm getting
stuck.

Estimating unknown parameters

The preceding discussion has concentrated on either estimating or reconstructing the
conditional distribution of {hy, t =1,...,T} given {y;, t = 1,...,T}. The MCMC methods
are easily incorporated into a Bayesian algorithm for estimating unknown parameter vector
6 through the strategy of alternately updating the {h;} variables and 6 as part of a Gibbs
sampler. Computing maximum likelihood estimates is a little harder since we need a
simulated version of the likelihood function; Shephard (1996) describes a way of doing this
via a simulated version of the EM algorithm and Shephard and Pitt (1997) describe an
importance sampling algorithm, but we shall not go into the details of these.

Eztensions of the SV model

It is logical to try to extend the SV model by including other components in h;, for
example, to a structure of the form

Yt = €t exp(thht/2), hitv1 = Tihy + n, e ~ N[(); Ht];

with h; a d-dimensional vector, T; and H; given d X d covariance matrices and z; a given
d x 1 vector. Indeed the main model considered by Shephard and Pitt (1997) is even more
general than this. One specific possibility is with d = 2,

1 v 0 o2 0
(1) () eV a)
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so that the stochastic volatility is a sum of two components, one an AR(1) process as in
the standard log-normal SV model, and the other a random walk. Thus, this potentially
allows for much more persistent volatility than the standard SV model (but presumably
with 03 << o so that the persistent component does not dominate all the other sources
of variation). Clearly, there are many other possibilities along these lines.

Empirical studies

Shephard (1996) compared the GARCH models with both normal and ¢-distributed
innovations with a simple log-normal SV model. For estimation purposes he used a simu-
lated maximum likelihood approach in order to compare the resulting log likelihood directly
with that of the GARCH model; he also computed a Box-Ljung statistic based on esti-
mated innovations as a test of the overall fit of the model. For all four series discussed in
section 7.7.2, Shephard found that the SV model was a better fit than the normal GARCH
model but not as good as the t GARCH model. This is true judging both by the value of
the log likelihood and the Box-Ljung statistic. The conclusion is that the SV model goes
some way towards explaining the empirical observation of long-tailedness, but still does
not do as well as the GARCH model with ¢-distributed innovations. A possible further
extension of the SV model would be to allow either the €; or the n; variables to have ¢
distributions. This could be fitted within the conditionally Gaussian framework by not-
ing that (for example) if ¢; ~ t, then we can write ¢, = & /w; with &, w; independent,
& ~ N[0,1], vw? ~ x2, and alternating between successively updating the {&;} and the
{wt}. This idea is mentioned by Shephard and Pitt (1999).

Another empirical study is in the paper by Shephard and Pitt (1999) — they fitted
univariate SV models (with Gaussian innovations) to five series of currency exchange rates
against the US dollar, the five currencies being the British pound, French franc, Swiss
franc, Deutsche Mark and Japanese yen. The lowest value of v, was 0.84 for the yen
series, but there was also empirical evidence of long-tailedness. For the four other series,
v, was in the range 0.94-0.97.

7.7.4. Multivariate models

In principle we would like to be able to extend all of these models to multivariate time
series, since in any problem concerned with the construction of a portfolio, correlations
between time series are of considerable importance. This has been considered by Shephard
(1996) and by Shephard and Pitt (1999).

Although there have been direct attempts to generalize the ARCH structure to mul-
tivariate series, the difficulty is that the models tend to be highly unparsimonious — for
example, Shephard (1996, page 42) remarks that for a 5-dimensional model, 465 parame-
ters have to be estimated (yet even 5 dimensions are very few compared with the number
of assets held in a typical portfolio). The difficulty is how to reduce the parametrization
of the model without imposing unreasonabe restrictions. The most popular models at the
present time seem to be those motivated by factor analysis, in which the obsrerved series
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are expressed as linear combinations of a much smaller number of unobserved series which
act as factors, with some residual noise thrown in.

As an example, consider the main model of Shephard and Pitt (1999). With some
change of notation compared with Shephard and Pitt, let us write the model (7.52) as
SV (v0,71,045). Shephard and Pitt consider a model of the form

Yyt = Bfe + wy (7.62)

in which y; is N x 1, the factor series f; is K X1, and 3 is a N X K matrix of factor loadings.
Here w; is a set of N independent series which Shephard and Pitt call idiosyncracies,

relecting features specific to each of the series. The K factor series ft(k), 1<k <K and
the N idiosyncracy series w,f"), 1 <n < N, are assumed to be mutually independent SV
processes with

UJt(j) ~ SV(’YOja'Ylja O-j)’ t(k) ~ SV(O’Pﬁk’UZ)'

Further there are some restrictions on the g matrix, mainly to ease some of the identi-
fiability conditions associated with this kind of model. The main restriction imposed is
ﬂiizlfOI‘lSiSK.

The fitting of this model is based on a block-updating MCMC scheme similar to
Shephard and Pitt (1997) but generalized to the multivariate case. A Bayesian approach
is taken with proper priors for all the model parameters. As an example, they fitted a
factor model with a single principal factor (K = 1) to the five series of currency exchange
rates against the US dollar. The main factor was found to explain respectively 57%, 99%,
35%, 84% and 92% of the variability for the pound, DM, yen, SF and FF respectively.
This is consistent with the interpretation that the yen moves largely independent of the
European currencies, because of the obvious influence of Asian factors which do not affect
the other currencies.
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