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Appendix A: Background

The purpose of this Appendix is to review background material on
the normal distribution and its relatives, and an outline of the basics of
estimation and hypothesis testing as they are applied to problems arising
from the normal distribution. Proofs are not given since it is assumed that
the reader is familiar with the material from more elementary courses.

12.1 The Normal, Chi-squared, t and F distributions

A random variable Y is said to have a normal distribution with mean µ
and variance σ2 (notation: Y ∼ N(µ, σ2)) if it is a continuous real-valued
random variable with density

f(y; µ, σ2) =
1

(2πσ2)1/2
exp{−(y − µ)2/2σ2}. (12.1)

The case where µ = 0 and σ2 = 1 is called standard normal.

Proposition 12.1. If Z is standard normal and Y = µ + σZ then Y ∼
N(µ, σ2).

This result is particularly useful in calculating probabilities for a general
normal random variable. The distribution function for standard normal,
given by

Φ(z) =
1√
2π

∫ z

−∞
e−t2/2dt

cannot be evaluated analytically but is widely tabulated. To compute the
distribution function for Y ∼ N(µ, σ2), define Z = (Y − µ)/σ and use
Proposition 12.1 in the form

Pr{Y ≤ y} = Pr
{

Y − µ

σ
≤ y − µ

σ

}
= Φ

(
y − µ

σ

)
.

Other useful properties of the normal distribution are summarized in
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Proposition 12.2. If Y1 ∼ N(µ1, σ
2
1), Y2 ∼ N(µ2, σ

2
2),..., Yn ∼ N(µn, σ2

n)
are independent normal random variables, then

n∑

i=1

Yi ∼ N

(
n∑

i=1

µi,

n∑

i=1

σ2
i

)
.

Note that the important statement here is that the sum has a normal
distribution. The mean and variance follow from elementary calculations.

More generally, if Y1, ..., Yn have any joint distribution with means
µ1, ..., µn and covariances σij = Cov(Yi, Yj), and if a1, ..., an are constants,
then

∑
aiYi has mean

∑
aiµi and variance

∑∑
aiajσij . If Y1, ..., Yn are

jointly normal then the sum has a normal distribution as well. The latter
property (that all linear combinations of a set random variables have a
normal distribution) may be taken as the definition of jointly normal.

As already mentioned, the standard normal distribution function Φ is
widely tabulated. For calculations used in constructing hypothesis tests and
confidence intervals, we often need to know the inverse standard normal
distribution function, i.e. for given A we need to know z such that

Φ(z) = A.

The resulting z is denoted zA. Sometimes tables of zA are produced; if they
are not available, then it is necessary to interpolate in a table of Φ.

A random variable X has a chi-squared distribution with n degrees
of freedom (notation: X ∼ χ2

n) if it can be written in the form X =
Z2

1 + Z2
2 + ... + Z2

n where Z1, ..., Zn are independent standard normal. It is
possible also to define the chi-squared distribution in terms of its density,
but we shall not need that.

The most important property of the chi-squared distribution is that it
is the sampling distribution of the sample variance in the case of normally
distributed samples. Suppose Y1, ..., Yn are a sample of observations. Define
the sample mean and variance

Ȳ =
1
n

n∑

i=1

Yi, s2 =
1

n− 1

n∑

i=1

(Yi − Ȳ )2. (12.2)

Note in particular the divisor n− 1 (rather than n) in the definition of s2.
This is to make the estimator unbiased.

We then have:

Proposition 12.3. Suppose Y1, ..., Yn are independent with distribution
N(µ, σ2). Then
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Ȳ ∼ N

(
µ,

σ2

n

)
,

(n− 1)s2

σ2
∼ χ2

n−1.

Moreover, Ȳ and s2 are independent random variables.

As with the normal distribution, it is useful to have some notation for
the inverse of the chi-squared distribution function. Accordingly, we define
the number χ2

n;A by the following property:

If X ∼ χ2
n then Pr{X ≤ χ2

n;A} = A.

Statistical tables typically give values of either χ2
n;A or χ2

n;1−A for n =
1, 2, ..., and a range of values of A.

The t distribution with n degrees of freedom is defined as the distribu-
tion of T = Z/

√
(X/n) when Z and X are independent, Z ∼ N(0, 1) and

X ∼ χ2
n. This is usually written T ∼ tn. The most important application

is the following:

Proposition 12.4. If Y1, ..., Yn are independent with distribution N(µ, σ2),
then

√
n

Ȳ − µ

s
∼ tn−1.

Note that this follows at once from Proposition 12.3 and the definition
of the t distribution.

The inverse distribution function is defined as the function tn;A with
the property:

If T ∼ tn then Pr{T ≤ tn;A} = A.

Once again, this or some variant of it is tabulated in all sets of statistical
tables.

The final distribution in this class is the F distribution, which is defined
as follows. Let X1 and X2 be two independent chi-squared random variables
with n1 and n2 degrees of freedom respectively. Let

U =
X1

n1
.
n2

X2
.

Then U has an F distribution with n1 and n2 degrees of freedom (notation:
U ∼ Fn1,n2). The inverse distribution function is denoted by Fn1,n2;A with
the property

If U ∼ Fn1,n2 then Pr{U ≤ Fn1,n2;A} = A.

Again, this is tabulated in all sets of statistical tables. Sometimes it is
necessary to use the identity



1004 Chapter 12. Appendix A: Background

Fn1,n2;A = 1/Fn2,n1;1−A

which follows immediately from the definition of the F distribution.
The best known application of the F distribution is in comparing the

variances of two samples. Suppose Y1, ...., Ym are independent observations
from N(µ1, σ

2
1) and W1, ..., Wn an independent sample of independent ob-

servations from N(µ2, σ
2
2). Suppose we are interested in the ratio σ2

1/σ2
2 ; for

instance, we might want to test the hypothesis that this ratio is 1. Calculate
the sample variances s2

1 and s2
2; then

U =
s2
1

σ2
1

.
σ2

2

s2
2

(12.3)

has an Fm−1,n−1 distribution. In particular, under the null hypothesis that
σ2

1 = σ2
2 this reduces to the statement that s2

1/s2
2 has an F distribution.

12.2 Estimation and hypothesis testing: The normal means
problem

To begin our review of estimation and hypothesis testing, we shall discuss
the problem of estimating µ when Y1, ..., Yn are independent from N(µ, σ2)
and σ2 is known. In most contexts it is unrealistic to assume that σ2 is
known while µ is unknown, and the case where both parameters are un-
known is considered in the next section. There are some situations, such
as trying to “tune” the mean level of a piece of machinery which has al-
ready been operating long enough for the variance to be assumed known, in
which the present formulation may be realistic. However, the main reason
for considering the present problem first is that it is the simplest of its type,
and therefore serves to define a framework which will be useful in studying
other problems later on.

The natural estimator of µ is the sample mean Ȳ . This has a number of
desirable properties; for example, it is unbiased and is a minimum variance
unbiased estimator. It is also the maximum likelihood estimator of µ. In
view of Proposition 12.3 we may define

Z =
√

n
Ȳ − µ

σ
(12.4)

which then has a standard normal distribution.
Suppose we want to form a 100(1−α)% confidence interval for µ, where

0 < α < 1 is given. Consider the following sequence of equalities:
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1− α = Pr{−z1−α/2 ≤ Z ≤ z1−α/2}

= Pr
{

µ− z1−α/2
σ√
n
≤ Ȳ ≤ µ + z1−α/2

σ√
n

}

= Pr
{

Ȳ − z1−α/2
σ√
n
≤ µ ≤ Ȳ + z1−α/2

σ√
n

}
. (12.5)

The last inequality has µ in the middle, and is therefore in the form we
need to specify a confidence interval. The conclusion is that the interval

[
Ȳ − z1−α/2

σ√
n

, Ȳ + z1−α/2
σ√
n

]
(12.6)

is the desired confidence interval. The interpretation of this interval is that,
in a long run of experiments conducted under identical conditions, the
quoted interval (12.6) will include the true mean µ a proportion 1 − α of
the time, provided of course all the assumptions that have been made are
correct.

For example, in applications it is quite common to take α = 0.05,
corresponding to which z0.975 = 1.96. The interval

[
Ȳ − 1.96

σ√
n

, Ȳ + 1.96
σ√
n

]

is a 95% confidence interval for µ.
Now let us turn to hypothesis testing. We consider the following three

possible specifications of the null hypothesis H0 and the alternative H1:

Problem A. H0 : µ ≤ µ0 versus H1 : µ > µ0.

Problem B. H0 : µ ≥ µ0 versus H1 : µ < µ0.

Problem C. H0 : µ = µ0 versus H1 : µ 6= µ0.

In each of these, µ0 is a specified numerical value. The three possibilities
A,B and C are certainly not the only ones it is possible to consider, but
they cover the majority of practical situations.

In each case, the test procedure consists of first forming a test statistic
which summarizes the information in the sample about the unknown pa-
rameter µ, and then forming a rejection region which determines the values
of the test statistic for which the null hypothesis H0 is rejected. The form
of the rejection region depends on the structure of the null and alternative
hypotheses.

For this problem the natural test statistic is Ȳ , and the form of rejec-
tion region depends on which of the above three testing problems we are
considering:
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For problem A: reject H0 if Ȳ > cA.

For problem B: reject H0 if Ȳ < cB .

For problem C: reject H0 if |Ȳ − µ| > cC .

In each case the constant cA, cB or cC is chosen to satisfy the probability
requirement that the probability of rejection of the null hypothesis, when
the null hypothesis is true, should not be less than α, where 0 < α < 1 is
specified.

In the case of problem A, suppose first we take µ = µ0. Defining Z as
in (12.4) with µ = µ0, we quickly deduce

α = Pr{Z > z1−α}
= Pr

{
Ȳ > µ + z1−α

σ√
n

}

from which we deduce that we should take cA = µ0 + z1−ασ/
√

n. It is then
readily checked that, for any other µ in H0, i.e. for µ < µ0, the probability
that Ȳ > cA is smaller than α, so the probability requirement is satisfied.

As an example, if we take α = 0.05 then z0.95 = 1.645 so the appropriate
test is to reject H0 if Ȳ is bigger than µ + 1.645σ/

√
n.

The argument for problem B is exactly similar, but with all the signs
reversed. We reject H0 if Ȳ < cB , where cB = µ0 − σz1−α/

√
n.

In the case of problem C, the same sequence of inequalities as in (12.5),
with µ = µ0, leads us to deduce that we should take cC = z1−α/2σ/

√
n.

Note that, as in (12.5) but in contrast to the results for problems A and B,
the appropriate point of the normal distribution is now z1−α/2, not z1−α.
The difference reflects the fact that we are dealing with a two-sided (alter-
native) hypothesis, whereas in cases A and B the alternative hypotheses
are both one-sided.

12.3 Other common estimation and testing problems

In this section we consider a number of other standard problems.

12.3.1 Normal means, variance unknown

Suppose we have a sample Y1, ..., Yn of independent observations from
N(µ, σ2), but this time with both µ and σ2 unknown. Again, our inter-
est is in forming a confidence interval or testing a hypothesis about µ. The
key difference is that we replace equation (12.4) by

t =
√

n
Ȳ − µ

s
(12.7)

where s is the sample standard deviation. Then t has the distribution of
tn−1. All the results of Section 12.2 remain valid, except that wherever σ
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appears we replace it by its estimate s, and wherever a normal distribution
point zA appears we replace it by its corresponding value tn−1;A. Thus, for
example, a 100(1− α)% confidence interval for µ is

[
Ȳ − tn−1;1−α/2

s√
n

, Ȳ + tn−1;1−α/2
s√
n

]
; (12.8)

compare with equation (12.6). For example, with n = 5, 10 and 20, the
respective t values for α = 0.05 are 2.776, 2.262 and 2.093 for 4, 9 and 19
degrees of freedom, compared with the limiting value 1.96 for the normal
distribution. This indicates the extent to which the confidence interval must
be lengthened to allow for the estimation of σ; even for n = 10 the effect
is quite modest, resulting in a 15% (2.262/1.96 = 1.15) lengthening of the
confidence interval.

The quantity s/
√

n is known as the standard error of the estimate Ȳ ; it
represents our estimate of the standard deviation of Ȳ , after substituting
the estimate s for the unknown true residual standard deviation σ.

When testing the null hypothesis µ = 0, the statistic t reduces to√
nȲ /s; in other words, the sample estimate of µ, divided by its standard

error. Very generally in statistics, when we take an estimate of a parameter
and divide it by its standard error, we call the resulting quantity the t
statistic. It forms the basis for very many tests of hypotheses.

12.3.2 Comparison of two normal means, variances known

Suppose now we have two samples, Y1, ..., Ym and W1, ...,Wn, respectively
from N(µ1, σ

2
1) and N(µ2, σ

2
2), with all observations independent and σ2

1

and σ2
2 known. Our interest is in tests or confidence intervals for the differ-

ence of means, µ1 − µ2. Of particular interest is the possibility of testing
whether µ1 = µ2, or in other words whether µ1 − µ2 = 0, against either
one-sided or two-sided alternatives.

Consider the statistic

Z =
Ȳ − W̄ − µ1 + µ2√

σ2
1/m + σ2

2/n
. (12.9)

Then Z has a standard normal distribution and tests and confidence inter-
vals may be based on that. For example, to test H0 : µ1 = µ2 against the
alternative H1 : µ1 6= µ2 and appropriate test is to reject H0 if

|Ȳ − W̄ | > z1−α/2.

√
σ2

1

m
+

σ2
2

n

where α is the desired size of the test.
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12.3.3 Comparison of two normal means, variances common but
unknown

Consider now the same situation as in the previous example, but suppose
that σ2

1 and σ2
2 are unknown, but we do assume they are equal to a common

value σ2. We can estimate σ2 by the combined sample variance

s2 =
∑

(Yi − Ȳ )2 +
∑

(Wi − W̄ )2

m + n− 2
which has the distributional property

(m + n− 2)s2

σ2
∼ χ2

m+n−2;

moreover, s2 is independent of Ȳ and W̄ . It follows that we may define

t =
√

mn

m + n

Ȳ − W̄ − µ1 + µ2

s
. (12.10)

(compare equation (12.9)), and this quantity has a tm+n−2 distribution.
Tests and confidence intervals for µ1−µ2 may then be based on the statistic
t defined in (12.10).

12.3.4 Comparison of two normal means, variances completely
unknown

What happens if, in the context of the previous example, if σ2
1 and σ2

2 are
not assumed equal? This is the famous Behrens-Fisher problem, named
after W.-U. Behrens who first wrote about the problem in 1929, and R.A.
Fisher who subsequently wrote about it at great length. The surprising
fact is that this problem is vastly more complicated than the other ones we
have been considering, and indeed does not have any solution of the same
type as the others that we have developed. The problem can be solved if
r = σ2

1/σ2
2 is known, and indeed the preceding subsection explains what

to do if r = 1; the case where r is some other known value is only a little
more complicated. Since it is also possible to construct tests and confidence
intervals for r (Section 12.3.6 below), an ad hoc solution is to estimate r
(or test whether r = 1) and then proceed as if r were known. However, this
does not satisfy the exact probability requirements of a test or confidence
interval.

An alternative procedure which can be applied when m = n is that
based on paired comparisons. Consider the differences Y1−W1, Y2−W2,...,
Yn−Wn; these are independent N(µ1−µ2, σ

2
1 +σ2

2) so that the method of
Section 12.3.2 may be used to form confidence intervals or hypothesis tests
about µ1 − µ2.

Some variant of this idea is commonly applied in clinical trials. Sup-
pose the random variables Y and W represent responses to two courses of
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treatment for a disease. It is possible to take pairs of patients, as closely
as possible matched in terms of age, sex and disease condition, and then
randomly assign one patient to receive one treatment and the other pa-
tient to receive the other. The resulting samples of patients receiving the
two treatments will not be homogeneous, and an analysis involving paired
comparisons is often appropriate.

However, this is a somewhat different situation from the one with which
we started this section, which assumes that each of the two samples repre-
sents an independent sample of identically distributed observations. In this
case the grouping of observations to form a paired comparison study will
be totally arbitrary, and as a result information may be lost in the analysis.
In more technical terms, a paired comparison analysis fails to satisfy the
intuitive property that it should be invariant under permutations of the
observations within each sample. However, a famous result due to Scheffé
showed that this difficulty is inherent to the Behrens-Fisher problem: that
there does not exist a procedure which is invariant under permutations of
the observations within each sample, and which satisfies the exact probabil-
ity requirement of a hypothesis test or confidence interval. The alternative
proposed by Behrens and Fisher is known as fiducial analysis, but this lies
outside the scope of the present discussion.

12.3.5 Estimation of a population variance

Suppose now we again have a single sample, Y1, ..., Yn from N(µ, σ2), and
we are interested in estimating σ2. The appropriate sampling statistic is
the sample variance s2, and Proposition 12.3 gives its distribution. For
example, suppose we are interested in a 100(1 − α)% confidence interval
for σ2. Defining X = (n− 1)s2/σ2 we may write

1− α = Pr{χ2
n−1;α/2 ≤ X ≤ χ2

n−1;1−α/2}

= Pr
{

χ2
n−1;α/2.

σ2

n− 1
≤ s2 ≤ χ2

n−1;1−α/2.
σ2

n− 1

}

= Pr

{
(n− 1) · s2

χ2
n−1;1−α/2

≤ σ2 ≤ (n− 1) · s2

χ2
n−1;α/2

}

so that [
(n− 1) · s2

χ2
n−1;1−α/2

,
(n− 1) · s2

χ2
n−1;α/2

]

is a 100(1− α)% confidence interval for σ2.
Note, however, that there is one contrast between this calculation and

the earlier ones about means. The standard normal and t distributions are
both symmetric about their mean at 0, so it is natural to define a confidence
interval in such a way that the error probability α is equally divided between
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the two tails, i.e. so that there is probability α/2 that the true value lies
to the left of the quoted confidence interval and probability α/2 that the
true value lies to the right. The χ2 distribution is not symmetric, so there
is no particular reason to follow this convention here. Indeed, it would be
possible to construct slightly shorter confidence intervals by abandoning
this requirement. However, the equal-tailed confidence intervals are the
most natural and the easiest to construct, so it is usual to stick with them
in practical applications.

As an example of these calculations, suppose n = 10 and we are inter-
ested in a 95% confidence interval. We have χ2

9;0.025 = 2.70 and χ2
9;0.975 =

19.02; moreover 9/2.70 = 3.33 and 9/19.02 = 0.473 so the 95% confidence
interval runs from 0.473s2 to 3.33s2. For a 99% confidence interval, we have
9/χ2

9;0.005 = 9/1.73 = 5.20 and 9/χ2
9;0.995 = 9/23.59 = 0.382 so the confi-

dence interval runs from 0.382s2 to 5.20s2. The considerable width of these
confidence intervals is to some extent in contrast with the comparatively
modest increase in the length of the confidence interval for a sample mean
which is needed to allow for the estimation of σ2 (recall the discussion at
the end of Section 12.3.1).

12.3.6 Ratio of two normal variances

Now consider the same situation as in Sections 12.3.2–12.3.4, i.e. Y1, ..., Ym

and W1, ..., Wn are two independent samples from distributions N(µ1, σ
2
1)

and N(µ2, σ
2
2) respectively, and suppose our interest is in the ratio σ2

1/σ2
2 .

Calculate the sample variance s2
1 and s2

2 and define U by (12.3); then tests
and confidence intervals may be based on the Fm−1,n−1 distribution of U .

As an example, suppose we wish to test H0 : σ2
1 = σ2

2 against the
alternative H1 : σ2

1 6= σ2
2 . Under the null hypothesis, U is just σ2

1/σ2
2 so the

test is to reject H0 if

s2
1/s2

2 < Fm−1,n−1;α/2 or s2
1/s2

2 > Fm−1,n−1;1−α/2.

For example, suppose m = 10 and n = 15 and we again fix α = 0.05. We
find F9,14;0.975 = 3.21 and F9,14;0.005 = 0.2631 and then we deduce that
we should reject H0 if s2

1/s2
2 is either less than 0.263 or greater than 3.21.

Once again, it often seems surprising that such comparatively large or small
ratios of s2

1/s2
2 should be considered consistent with the null hypothesis, but

this again reflects the considerable uncertainty in estimating variances from
such comparatively small samples.

1In S-PLUS or R, these percentage points may be obtained by typing qf(0.975,9,14)
or qf(0.025,9,14) respectively. If using statistical tables, it may be necessary to look
up F14,9;.975 = 3.80 and then deduce F9,14;0.005 = 1/F14,9;.975 = 0.263. Note also that
some interpolation in the tables may be necessary to achieve these results.
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12.4 Joint and conditional densities, and the multivariate
normal distribution

12.4.1 Densities of random vectors

Consider the case of a p-dimensional random vector Y = (Y1, ..., Yp)T . The
density of Y at y = (y1, ..., yp)T , denoted fY (y), exists if the limit

fY (y) = lim
h1↓0,...,hp↓0

Pr{y1 < Y1 ≤ y1 + h1, ..., yp < Yp ≤ yp + hp}
h1...hp

exists. Usually we consider the distribution of a random vector to be con-
tinuous if fY (y) exists for every y ∈ Rp, though it may be 0 for some
y.

Suppose Y =
(

Y (1)

Y (2)

)
where Y (1) consists of the first q components

of Y and Y (2) consists of the last p − q. The marginal density of Y (1) is
obtained by integrating out the components of Y (2),

fY (1)(y(1)) =
∫

fY

(
y(1)

y(2)

)
dy(2) (12.11)

where the integral in (12.11) is typically over the whole of Rp−q.
The conditional density of Y (2) given Y (1) = y(1), denoted

f{Y (2)|Y (1)=y(1)}(y(2)), is defined by the formula

fY

(
y(1)

y(2)

)
= fY (1)(y(1))f{Y (2)|Y (1)=y(1)}(y

(2)). (12.12)

Suppose Y is a p-dimensional random vector with density fY (y), and
let Y = h(Z) for some differentiable one-to-one function h. The density of
Z, denoted fZ(z), is given by

fZ(z) = fY (h(z)) |J |, (12.13)

where |J | denotes the determinant of the matrix J , and J is the Jacobian
matrix whose (i, j) entry is

J(i, j) =
∂yi

∂zj
.

In particular, for a linear transformation Y = BZ for some nonsingular
p× p matrix B, J = B and so

fZ(z) = fY (Bz) |B|. (12.14)
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12.4.2 Means and Covariance Matrices

Suppose Y is a p-dimensional random vector with density fY (y). The mean
of Y , denoted E(Y ) or µY , is defined by

E(Y ) = µY =
∫

yfY (y)dy, (12.15)

where the integral may without loss of generality be taken to be over the
whole of Rp since any parts where Y is undefined may be taken to have
fY (y) = 0.

For a discrete random variable which takes a countable set of values
{y(i)} with probability mass function pY (y(i)), the corresponding formula
is

E(Y ) = µY =
∑

y(i)pY (y(i)). (12.16)

The covariance matrix of Y is defined by

ΣY = E{(Y − µY )(Y − µY )T }. (12.17)

If Z = AY + b is some linear transformation of Y , then

µZ = AµY + b,

ΣZ = AΣY AT .

12.4.3 The multivariate normal distribution

In this subsection we state and prove a few of the elementary properties of
the multivariate normal distribution with nonsingular covariance matrix.
No attempt is made to be comprehensive; the objective is to provide nec-
essary background for the (relatively few) places that this distribution is
used in the text.

Suppose Y is a p-dimensional random vector with mean µY and co-
variance matrix ΣY , and suppose ΣY is nonsingular. Y is said to have a
multivariate normal distribution if it has the density

fY (y) = (2π)−p/2|ΣY |−1/2 exp
{
−1

2
(y − µY )T Σ−1

Y (y − µY )
}

. (12.18)

Here are a few properties of the multivariate normal distribution.

Proposition 12.5. If ΣY is a diagonal matrix with diagonal entries σ2
1 >

0, ..., σ2
p > 0, and if µY = (µ1, ..., µp)T , then the statement that Y has

a multivariate normal distribution with mean µY and covariance matrix
ΣY is equivalent to the statement that Y1, ..., Yp are independent random
variables with Yi ∼ N(µi, σ

2
i ).
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Proof. If ΣY is diagonal then |ΣY | =
∏p

i=1 σ2
i , and Σ−1 is also diagonal

with diagonal entries σ−2
1 , ..., σ−2

p . Therefore, (12.18) is equivalent to the
density

fY (y) =
p∏

i=1

[
1√
2πσ2

i

exp

{
−1

2

(
yi − µi

σi

)2
}]

. (12.19)

But (12.19) is the product of N(µi, σ
2
i ) densities, and therefore establishes

that Y1, ..., Yp are independent and normally distributed. The reverse ar-
gument is the same: if we are given that Y1, ..., Yp are independent normal,
then (12.19) is the joint density, but this is the same as the joint density
(12.18) for the multivariate normal.

Proposition 12.6. If Y is multivariate normal with mean µY and covari-
ance matrix ΣY , and if Z = AY + b with A a p × p nonsingular matrix
and b ∈ Rp, then Z is multivariate normal with mean µZ = AµY + b and
covariance matrix ΣZ = AΣY AT .

Proof. Write Y = A−1(Z − b). This is a one-to-one differentiable trans-
formation with Jacobian matrix J = A−1. By the transformation rule
(12.13), the density of Z is

fZ(z) = fY (A−1(z − b)) |A|−1

= (2π)−p/2|ΣY |−1/2|A|−1 ·
· exp

[
−1

2
{A−1(z − b)− µY }T Σ−1

Y {A−1(z − b)− µY }
]

= (2π)−p/2|ΣZ |−1/2 ·
· exp

{
−1

2
(z − b−AµY )T (AT )−1Σ−1

Y A−1(z − b−AµY )
}

= (2π)−p/2|ΣZ |−1/2 exp
{
−1

2
(z − µZ)T Σ−1

Z (z − µZ)
}

.

This is of the form required for the result.

Remark. Proposition 12.6 is actually true in much greater generality
than here stated — in particular, it is true without the assumption that A
be nonsingular (but in that case needs to be interpreted differently, since
Z does not have a density) and also in the case when A is a q × p matrix
with q not necessarily equal to p. We have stated it in the simpler form
here because this is all that is needed for the results in the text.

We note one consequence of Proposition 12.6, which is critical to the
proofs of section 3.9:
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Proposition 12.7. Suppose Y = (Y1, ..., Yp)T where Y1, ..., Yp are inde-
pendent N(0, σ2). Suppose Z = (Z1, ..., Zp)T = QY , where Q is orthogonal,
i.e. QQT = QT Q = I. Then Z1, ..., Zp are also independent N(0, σ2).

Proof. µZ = QµY = 0, ΣZ = QΣY QT = σ2QQT = σ2I. By Propo-
sition 12.6, Z is multivariate normal with mean 0, covariance matrix σ2I.
By Proposition 12.5, this means that Z1, ..., Zp are independent N(0, σ2).
Hence the result is established.


