
STOR 664: FALL 2023
Final Exam, December 7–8, 2023

The exam will be posted on gradescope and available from 6:00 pm Thursday, December 7
through 11:59 pm Friday, December 8.

This is an open-book, take-home exam. Access to course materials and standard computational
tools (in particular, R) is allowed; communication with other students or with anybody via the
internet, other than the instructor, is not. The university Honor Code is in effect at all times.

Answers may be given in any of the following formats (including combinations of more than
one): R Markdown, Word, Latex or handwritten pages scanned or photographed; if handwritten,
it is recommended you use blue or black ink on plain sheets of white paper. Hadwritted script on
an iPad or tablet will also be accepted if uploaded in machine-readable (e.g. pdf) format. You are
requested to submit your final solutions in gradescope but if for some reason that doesn’t work,
you may email tem to the instructor.

Each question will be graded out of 50 points for a total score of 100 for the whole exam. An
error in one part-question will not prevent you gaining full credit in other parts of the same question
even if you carry over the error. You may answer the questions (or parts within a question) in any
order; answers out of sequence will not be penalized so long as you make clear which part of your
answer refers to which part of the question sheet.

There is no official time limit for the exam but it is strongly recommended that you self-limit to
6 hours total; continuing to work beyond that time is unlikely to improve your grade. Any queries
about the exam may be addressed directly to the instructor by email, text message or cellphone.

1. Three-dimensional response surface design. Consider an experiment with three vari-
ables X1, X2, X3 laid out as follows:

X1: + + + + + + + + + 0 0 0 0 0 0 0 0 0 - - - - - - - - -

X2: + + + 0 0 0 - - - + + + 0 0 0 - - - + + + 0 0 0 - - -

X3: + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 -

Here, the symbols +, 0 and - represent the numerical values 1, 0, −1 and the order is intended
to represent the actual order of covariates in the 27 observations in the experiment. (For
example, the variable X1 is represented through observations x1,1 = x2,1 = . . . = x9,1, x10,1 =
. . . = x18,1 = 0, x19,1 = . . . = x27,1 = −1 with corresponding notation for xi,2 and xi,3, i =
. . . , 27.) Also assume that each of the 27 responses is given by a formula of the form

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4x
2
i,1 + β5x

2
i,2 + β6x

2
i,3 + εi

where xi,1, xi,2, xi,3 represent the values of X1, X2, X3 in the ith row of data and
{εi, i = 1, . . . , 27} represent independent normally distributed errors with mean 0 and com-
mon variance σ2.

(a) Write down the X matrix for this regression problem and calculate XTX and (XTX)−1.
(Note: Since this is an open-book computer-aided exam, you are allowed and encouraged
to use R, matlab or other appropriate software to complete the calculations, but your
final answer should be an explicit statement of the result.) [10 points]
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(b) Define:

T0 =
∑

yi,

T1 =
∑

yixi,1,

T2 =
∑

yixi,2,

T3 =
∑

yixi,3,

T4 =
∑

yix
2
i,1,

T5 =
∑

yix
2
i,2,

T6 =
∑

yix
2
i,3

Show that

β̂0 =
7

27
T0 −

1

9
(T4 + T5 + T6)

and derive similar expressions for β̂j , j = 1, . . . , 6. What are the variances of these
estimators? [10 points]

(c) Now suppose the objective is to find the values X∗
1 , X

∗
2 , X

∗
3 (not necessarily integers)

to maximize the expected response β0 + β1X
∗
1 + β2X

∗
2 + β3X

∗
3 + β4X

∗
1
2 + β5X

∗
2
2 +

β6X
∗
3
2. Assume β4, β5, β6 are all < 0 so that the surface has a finite maximum.

Derive theoretical expressions for X∗
1 , X

∗
2 , X

∗
3 and show how to calculate estimators

X̂∗
1 , X̂

∗
2 , X̂

∗
3 in terms of the estimators calculated in part (b). [5 points]

(d) Are the estimators X̂∗
1 , X̂

∗
2 , X̂

∗
3 independent? — explain why or why not. Using

whatever approximations you consider appropriate, state formulas for the standard errors
X̂∗

1 , X̂
∗
2 , X̂

∗
3 in terms of the quantities β̂0, . . . , β̂6 and s2. (Assume s2 is the usual

unbiased sample estimator of σ2; you don’t need to give a separate formula for that.)
[10 points]

(e) Suppose you want to find a 99% confidence interval for X∗
1 . Show how to do this using (i)

delta method, (ii) Fieller method. In particular, show that the endpoints of the Fieller
confidence set are the solutions of the quadratic equation

(4β̂24 − 5.397305s2)x2 + 4β̂1β̂4x+ β̂21 − 0.4497754s2 = 0,

and state the conditions under which the confidence set is an interval.

(It is acceptable that you may get slightly different values for the numerical quantities
5.397305 and 0.4497754, but you should show where they come from. Since very similar
formulas will apply for X∗

2 and X∗
3 , you are not asked to find those.) [15 points]

Question 2 on the next page.
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2. Computational Exercise (This part is expected to be completed using R). You may
use any R packages but your final answer should include your R code including any packages
that you use.

Consider the diabetes dataset in Faraway’s package. This may be loaded into R di-
rectly through library(faraway) followed by data(diabetes). The dataset includes a
response variable glyhb (Glycosolated Hemoglobin) and numerous predictors. Glycosolated
hemoglobin greater than 7.0 is usually taken as a positive diagnosis of diabetes.

Remove the variables id (not relevant for predictions), bp.2s and bp.2d (too many missing
datapoints) and use na.omit to reduce the dataset to one where all observations are complete.
(These operations are considered part of the initial data manipulation and not awarded formal
credit. You should end up with a matrix with 366 observations and 16 variables including
glyhb.)

(a) Fit a linear regression model for glyhb on the other 15 variables. Use stepwise regression
to reduce the number of variables and comment briefly on your results. [5 points]

(b) Would you consider any transformation of glyhb? Use plots and any numerical diagnos-
tics you consider appropriate, choose a suitable transformation, and repeat the analysis
of part (a). (For the rest of this question, you should use the transformed values, unless
your decision is to stick with the original values of glyhb.) [5 points]

The next few parts should be based on your final model from parts (a) and (b).

(c) Calculate the studentized residuals and comment on whether there appear to be outliers,
justifying your answer with appropriate tests or plots. [5 points]

(d) Plot the residuals against each of the covariate and the fitted values; hence comment on
whether there is an evidence that the model dies not fit the data. [5 points]

(e) Do the residuals appear to follow a normal distribution? Briefly justify your answer with
suitable tests or plots. [5 points]

(f) Calculate appropriate diagnostics for leverage and influence, and comment on the results.
[5 points]

(g) One observation appears to have very large leverage and another seems to have large
influence. Identify these variables and repeat the main parts of steps (c) through (f)
without those observations; do any of your conclusions substantially change? [5 points]

(h) Returning to the original dataset with 366 observations and 16 variables, but still using
any transformation you decided to use on glyhb, split the data into a training dataset
and a test dataset where the test dataset consists of every tenth observations (i.e. rows
10, 20, . . . , 360) and the training dataset is everything else. Based on the training
dataset, repeat your model selection from part (b) and find alternative models using
(i) principal components regression, (ii) PLS regression, (iii) ridge regression and (iv)
LASSO. You may use any appropriate package(s) but please be explicit about your
method of calculation.

Then, for all five methods, use the best model you fitted to predict the values of glyhb
on the test dataset. Use root mean squared error (on the original scale — this way
we can compare estimators using different transformations) to decide which of the five
methods is best on this example. Summarize your conclusions. [15 points]
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Sample Solutions

Note: As with any exam of this nature, there are many possible variations on the solutions.
Equivalent solutions that get the right answers will earn full credit, provided they are adequately
explained.

1. (a) You can write this out longhand or use an R script such as

x0=rep(1,27)

x1=c(1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1)

x2=c(1, 1, 1, 0, 0, 0,-1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1)

x3=c(1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1)

X=cbind(x0,x1,x2,x3,x1*x1,x2*x2,x3*x3)

S=t(X)%*%X

SI=solve(S)

where S represents XTX and SI represents (XTX)−1. You can also quickly check that
54 ∗ SI is an integer array. Therefore,

X =



1 1 1
1 1 0
1 1 −1
1 0 1
...

...
...

−1 −1 −1


, XTX =



27 0 0 0 18 18 18
0 18 0 0 0 0 0
0 0 18 0 0 0 0
0 0 0 18 0 0 0

18 0 0 0 18 12 12
18 0 0 0 12 18 12
18 0 0 0 12 12 18


, (XTX)−1 =

1

54



14 0 0 0 −6 −6 −6
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 3 0 0 0
−6 0 0 0 9 0 0
−6 0 0 0 0 9 0
−6 0 0 0 0 0 9


.

(b) The vector



T0
T1
T2
T3
T4
T5
T6


represents XTy and hence the estimators β̂ = (XTX)−1XTy lead

to

β̂ =



β̂0
β̂1
β̂2
β̂3
β̂4
β̂5
β̂6


=

1

54



14T0 − 6(T4 + T5 + T6)
3T1
3T2
3T3

−6T0 + 9T4
−6T0 + 9T5
−6T0 + 9T6


.

The top row is equivalent to the given expression for β̂0 and the remaining rows lead
to β̂1 = T1

18 , . . . , β̂4 = T4
6 −

T0
9 ,etc. Based on (XTX)−1σ2, the variances of β̂0, . . . , β̂6 are

7σ2

27 ,
σ2

18 ,
σ2

18 ,
σ2

18 ,
σ2

6 ,
σ2

6 ,
σ2

6 .
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(c) From basic calculus X∗
1 = − β1

2β4
, X∗

2 = − β2
2β5

, X∗
3 = − β3

2β6
. The obvious estimators will

substitute β̂j for βj , e.g. X̂∗
1 = − β̂1

2β̂4
.

(d) If we omit the first row and column of (XTX)−1, the remaining 6×6 matrix is diagonal;
hence, β̂1, . . . , β̂6 are mutually independent. Therefore, the pairs (β̂1, β̂4), (β̂2, β̂5), (β̂3, β̂6)
are mutually independent and, hence, so are any functions of these pairs. Therefore, the
three estimators X̂∗

1 , X̂
∗
2 , X̂

∗
3 are mutually independent. (Note that β̂0 is correlated

with β̂j for j = 4, 5, 6 but that does not affect your answer because none of X̂∗
1 , X̂

∗
2 , X̂

∗
3

depends on β̂0.)

Using the delta method, the variance of − β̂1
2β̂4

is approximately 1
4β2

4
Var(β̂1) +

β2
1

4β4
4
Var(β̂4)

(no covariance term because β̂1 and β̂4 are uncorrelated and hence independent). Us-

ing the previously derived formulas for the variances, this reduces to 1
4β2

4

σ2

18 +
β2
1

4β4
4

σ2

18 =

σ2

72β4
4

(
β24 + 3β21

)
for the approximate) variance of X̂∗

1 . Similarly, the approximate vari-

ances of X̂∗
2 and X̂∗

3 are σ2

72β4
5

(
β25 + 3β22

)
and σ2

72β4
6

(
β26 + 3β23

)
.

Therefore, suitable approximate formulas for the standard errors of X̂∗
1 , X̂∗

2 and X̂∗
3 are

s

√
β̂2
4+3β̂2

1

72β̂4
4

, s

√
β̂2
5+3β̂2

2

72β̂4
5

, s

√
β̂2
6+3β̂2

3

72β̂4
6

.

(e) The delta method will treat the standard errors of part (e) as exact, leading to a confi-
dence interval for X∗

1 of the form

− β̂1

2β̂4
± 2.84534s

√√√√ β̂24 + 3β̂21
72β̂44

.

The number 2.84534 comes from qt(0.995,20) in R.

The Fieller method for a confidence interval will include all values x for which a test of
H0 : X∗

1 = x versus H1 : X∗
1 6= x will accept H0 at the two-sided significance level 0.01.

Since H0 is equivalent to the hypothesis β2 + 2β4x = 0, this hypothesis is accepted for
all x such that ∣∣∣∣∣∣ β̂1 + 2β̂4x

s
√

1
18 + 4x2

6

∣∣∣∣∣∣ ≤ 2.84534

where the number 2.84534 is again derived from qt(0.995,20).

(β̂1 + 2β̂4x)2 ≤ s2(0.4497754 + 5.397305x2).

The numbers 0.4497754 and 5.397305 may be formally derived in R as

c(qt(0.995,20)^2/18,2*qt(0.995,20)^2/3)

The endpoints of the confidence set are derived by replacing the ≤ in the last equation
by =, which is quickly rearranged to the equation given in the question. The condition
for this confidence set to be an interval is that the coefficient of x2 is positive, i.e.
4β̂24 > 5.397305.
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2. (a) Some possible initial code for this example is

library(faraway)

data(diabetes)

diab1=diabetes[,-c(1, 15, 16)]

diab2=na.omit(diab1)

lm1=lm(glyhb~., diab2)

lm2=step(lm1)

which leads to the following (edited) tables for lm1 and lm2:

summary(lm1)

....

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.1567074 2.3918851 -0.902 0.3679

chol 0.0050363 0.0033584 1.500 0.1346

stab.glu 0.0275617 0.0015274 18.045 <2e-16 ***

hdl -0.0034033 0.0104283 -0.326 0.7444

ratio 0.0851633 0.1142484 0.745 0.4565

locationLouisa -0.2337873 0.1608593 -1.453 0.1470

age 0.0134974 0.0060629 2.226 0.0266 *

genderfemale 0.0850168 0.2517108 0.338 0.7358

height 0.0227918 0.0306269 0.744 0.4573

weight -0.0041222 0.0052581 -0.784 0.4336

framemedium 0.0518612 0.1985753 0.261 0.7941

framelarge -0.2281141 0.2642373 -0.863 0.3886

bp.1s 0.0027597 0.0048761 0.566 0.5718

bp.1d -0.0014471 0.0075742 -0.191 0.8486

waist 0.0295509 0.0308031 0.959 0.3380

hip 0.0157799 0.0349919 0.451 0.6523

time.ppn 0.0005652 0.0002494 2.266 0.0241 *

Residual standard error: 1.439 on 349 degrees of freedom

Multiple R-squared: 0.6025,Adjusted R-squared: 0.5843

....

summary(lm2)

....

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3766599 0.4038739 0.933 0.3516

chol 0.0046921 0.0019880 2.360 0.0188 *

stab.glu 0.0276382 0.0014935 18.506 <2e-16 ***

ratio 0.1201150 0.0503588 2.385 0.0176 *

locationLouisa -0.2232598 0.1518282 -1.470 0.1423

age 0.0147647 0.0048871 3.021 0.0027 **

time.ppn 0.0005037 0.0002439 2.065 0.0396 *

Residual standard error: 1.429 on 359 degrees of freedom

Multiple R-squared: 0.5967,Adjusted R-squared: 0.59
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The model lm2 drops several insigificant variables from lm1. The most significant vari-
ables for predicting glyhb appear to be stab.glu (Stabilized Glucose) and age.

(b) See, for example,

par(mfrow=c(2,2))

library(MASS)

boxcox(lm2)

hist(diab2$glyhb, breaks=20)

hist(log(diab2$glyhb), breaks=20)

hist(1/diab2$glyhb, breaks=20)

The Box-Cox plot suggests λ ≈ −1 so we show the three histograms for the original
y variable (diab2$glyhb) and for log y and 1/y. All three histograms are somewhat
asymmetrical but that for 1/y is arguably closest to normal.

Figure 1: Box-Cox plot for Model lm2 and Three Histograms.

In this analysis, I transform glyhb (without changing its name) and repeat the analysis
of before:

diab2$glyhb=1/diab2$glyhb

lm3=lm(glyhb~., diab2)
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lm4=step(lm3)

summary(lm4)

leading to

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.494e-01 1.520e-02 22.982 < 2e-16 ***

chol -7.209e-05 5.027e-05 -1.434 0.15237

stab.glu -4.952e-04 3.806e-05 -13.011 < 2e-16 ***

ratio -2.910e-03 1.311e-03 -2.220 0.02703 *

locationLouisa 6.523e-03 3.845e-03 1.697 0.09063 .

age -6.216e-04 1.241e-04 -5.010 8.56e-07 ***

waist -1.093e-03 3.496e-04 -3.127 0.00191 **

time.ppn -1.177e-05 6.174e-06 -1.907 0.05735 .

Residual standard error: 0.03611 on 358 degrees of freedom

Multiple R-squared: 0.5134,Adjusted R-squared: 0.5038

The variables stab.glu and age are still the most significant but also waist is identi-
fied. It is somewhat disturbing that both forms of R2 are substantially lower than in
the original model, which raises the question of whether the y → 1/y transformation has
really improved the model. For the rest of this solution, I shall stick with this transfor-
mation but will also give credit for the original or some alternative transformation if it
is consistently followed through.

(c) You can calculate the studentized residuals by rstudent(lm4); the range goes from –
4.205 to 4.371 whih suggests that there are indeed outliers (we know that studentized
residuals have the distribution tn−p−1 = t357 if the model is correct; the 2-sided p-value
associated with 4.371 is about 1.6× 10−5 which is extremely low even allowing that this
is the most extreme out of 366 observations). We conclude that there are outliers in the
data.

(d) None of the residual plots (Figure 2) suggests anything obviously wrong with the model.

(e) Applying qqnorm followed by qqline to the studentized residuals gives the left-hand plot
in Figure 3 (the regular residuals would produce something very similar). The plot does
not appear consistent with a normal distribution. For a goodness of fit test, you could
load the R function gofsim from https://rls.sites.oasis.unc.edu/faculty/rs/source/Data/Rcode-
gof.txt, then gofsim(diab2$glyhb,model.matrix(lm4),0,1000) shows p-values very
close to 0 in all four tests. (You could, of course, use anybody else’s implementations of
the goodness of fit tests and you should come to the same conclusion.)

(f) sort(hatvalues(lm4)) identifies observation 56 (numbered 63 in the original database)
as very high leverage, and sort(cooks.distance(lm4)) shows observation 176 (original
database 195) as influential (see the right-hand plot in Figure 3; although not marked,
the observation on the extreme right is number 63).

(g) I am not showing all the estimates and plots here, but very little changes if those two ob-
servations are omitted; no new points emerge as having high leverage or Cook’s distance,
but there are still outliers and strong evidence against the fit of a normal distribution.
(Also, although I’m not showing all those estimates and plots either, if you repeat the
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results of (c) through (g) with no transformation of glyhb, you again get similar re-
sults, in fact even worse for the fit of a normal distribution. I conclude that there is no
straightforward transformation that solves the residual normality problem.)

Figure 2: Studentized residuals plotted against covariates and fitted values.
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Figure 3: Normal probability plot for studentized residuals; Residuals versus
Leverage plot.

(h) With the dataset first split into a training dataset and a test dataset as described, the
first analysis repeated the stepwise variable selection given earlier, and the resulting
model used to predict the values of glhyb in the test dataset. Since these values are
the reciprocals of the original values, and the question explicitly asked to compute the

RMSE on the original scale, the predictions were evaluated as

√∑
i

(
1

ŷ∗i
− 1

y∗i

)2

where

y∗i is the ith test value and ŷ∗i its predictor. Next, PCR and PLS regression were fitted
using the pls library, the optimal model size being selected by leave-one-out cross-
validation. [Side comment: the default 10-fold cross-validation would also be acceptable
but, because that means a random split of the data, would give slightly different values.]
The PCR method selected a model with 7 components and the PLS method selected a
model with 5 components. The predictions on the test dataset were evaluated by the
same RMSE function as used for the stepwise selection method. Finally, the LASSO
and ridge regression methods were implemented using the glmnet function with α = 1
and α = 0 respectively. Leave-one-out cross-validation (nfolds=330) was used to select
λ; the diagram illustrating this process for LASSO is shown as Figure 4. The resulting
models with optimal λ were used to predict the response values on the test dataset.
The RMSEs for the five methods were 1.917, 1.936, 1.939, 1.940 and 1.935 respectively,
which imply that the stepwise regression method worked best, though all five methods
give similar results. Some possible R code is as follows (if you looked up the 2022 final
exam, you will see that very similar code was used for the corresponding question there):

rmse=function(x1,x2){sqrt(mean((1/x1-1/x2)^2))}

# rmse defined to calculate on original scale

diabte=diab2[10*1:36,]

diabtr=diab2[-10*1:36,]

lm5=lm(glyhb~.,diabtr)

lm6=step(lm5)

rmse(predict(lm6,diabte),diabte$glyhb)

# result 1.91741

#

# PCR and PLS regression

library(pls)

pcrmod=pcr(glyhb~.,data=diabtr,ncomp=15,validation=’LOO’)
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pcrCV=RMSEP(pcrmod,estimate=’CV’)

which.min(pcrCV$val) # result is 8, corresponds to 7 components

rmse(predict(pcrmod,diabte,ncomp=7),diabte$glyhb)

# result 1.936387

pcrmod=plsr(glyhb~.,data=diabtr,ncomp=15,validation=’LOO’)

pcrCV=RMSEP(pcrmod,estimate=’CV’)

which.min(pcrCV$val) # result is 6, corresponds to 5 components

rmse(predict(pcrmod,diabte,ncomp=5),diabte$glyhb)

# result 1.938924

#

# ridge and lasso reression correspond to alpha=0 and alpha=1 in glmnet

library(glmnet)

par(mfrow=c(1,2),cex=1.3)

# note that the X matrix in glmnet must be numerical, so we have to take

# the model.matrix from previous analyses

X=model.matrix(lm1)[,2:17]

Xte=X[10*1:36,]

Xtr=X[-10*1:36,]

ytr=diabtr$glyhb

yte=diabte$glyhb

# lasso first

fit=glmnet(Xtr,ytr,alpha=1)

cvfit=cv.glmnet(Xtr,ytr,alpha=1,nfolds=330)

cvfit$lambda.min # result 0.0006689415

which.min(cvfit$cvm) # result 43

coef(cvfit, s = "lambda.min")

sum(abs(coef(cvfit, s = "lambda.min")[2:17])) # result 0.01521026

plot(fit)

mtext(side=3,line=2,’Diabetes Training Dataset’,cex=2)

lines(c(0.0152,0.0152),c(-100,100))

text(0.0152,0.004,expression(lambda==0.00067))

text(0.0152,0.0035,expression(sum(abs(beta[j]))==0.0152))

plot(cvfit)

mtext(side=3,line=2,’Cross-Validation’,cex=2)

rmse(predict(fit,Xte)[,43],yte)

# result 1.939561

#

# same for ridge

fit=glmnet(Xtr,ytr,alpha=0)

cvfit=cv.glmnet(Xtr,ytr,alpha=0,nfolds=330)

cvfit$lambda.min # result 006385371

which.min(cvfit$cvm) # result 93

coef(cvfit, s = "lambda.min")

sum(abs(coef(cvfit, s = "lambda.min")[2:18])) # result 0.01762758

plot(fit)

mtext(side=3,line=2,’Diabetes Training Dataset’,cex=2)

lines(c(0.0176,0.0176),c(-100,100))

text(0.0176,0.004,expression(lambda==0.0064))

text(0.0176,0.0035,expression(sum(abs(beta[j]))==0.0176))

plot(cvfit)

mtext(side=3,line=2,’Cross-Validation’,cex=2)
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rmse(predict(fit,Xte)[,93],yte)

# result 1.934743

Figure 4: Plots for the LASSO fit.

Comments on student solutions. On the whole I was satisfied with the scores on the final exam;
the mean was 86.4, median 89, first and third quartiles were 79.5 and 93.5 as computed in R.

Question 1 (mean score 43.9/50) scored slightly higher than Question 2 (mean 42.5). On
Question 1, many students were confused by the independence question in (d); some students mis-
stated the t distribution for parts (d) and (e); and some forgot or just didn’t answer the question
about when the Fieller confidence set is a confidence interval.

In Question 2, there seemed to be a lot of confusion about the transformation of the response
variable. It surprised me that some students did the Box-Cox analysis correctly, but failed to draw
the correct interpretation that some λ near –1 was called for (you could get away with a different
transformation, such as a logarithmic transformation, but then you should have explained exactly
why you chose that).

Parts (c) through (g) were fairly mechanical, though many students simply gave a long list of
observations that were supposedly either outliers or influential without attempting much interpre-
tation. Part (h) was of course the trickiest part, but you had plenty of notice (e.g. last year’s exam)
that something like this was going to come up, and the answer to this is also fairly mechanical once
you figure out how the software packages work. In many cases, however, I couldn’t figure out how
you got your final answer, so a lot of the grade was based on how close you got to what I consider
the correct answer, which is an RMSE between 1.9 and 2 for all five methods. The model answer
given above was based on λ = −1, but since the question asked you to compute RMSEs on the
original scale of the data, you should get answers of the same magnitude whatever your initial
transformation. (For the record, I tried λ = 1, 0.5, 0 and –0.5 as well as λ = −1, and all of my
final RMSEs were between 1.9 and 2.)

Overall, I felt that your understanding of the methods and mathematical techniques was quite
good, but quite a few answers were poorly written. Given that for large parts of an exam like this,
there is no single “right answer”, so a lot of the credit went to how well you explained the answers
you gave. I deducted many more points for poor explanations (or, in some cases, no explanation
at all) than I did for technical errors!
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