STOR 664: APPLIED STATISTICS I
 Instructor: Richard L. Smith

Class Notes:

November 29, 2022

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Class Announcements

- Take-home exam: will be set 6:00 am - 9:00 pm Saturday, December 3, but with a 6-hour time limit
- Make-up exam: 12:00 pm - 6:00 pm Sunday, December 4 (by prior arrangement)
- Past exams with solutions are on course webpage
- Usual Honor Code rules apply: no consulting with other class members or any outside person but me
- Review session 5:00 pm - 6:00 pm Thursday, December 1 (room TBA)
- Final assignment due today (gradescope)
- Project also due today (gradescope or email)
- Office hour today: 2:00-3:00 pm (note change of usual time)
- Grades will be announced a.s.a.p. but won't be immediate (please check HW scores on gradescope)
- If I agreed to write a letter of recommendation for you and have not done so, please let me know
- Please complete CAS survey!

Chapter 8: Analysis of Designed Experiments

Basic definitions:

- Units, e.g. people, plots of land, industrial experiments
- Treatments, e.g. medical, fertilizer, temperature of an industrial process
- Blocks: other variables that affect the outcome but are not of direct interest (e.g. in medical studies, sex, age, race, prior medical condition
- Interactions arise when treatments perform better in some blocks than others

All involve factor (i.e. non-numeric) variables
Typically represent factors as $0-1$ variables, e.g.

$$
x_{i j}= \begin{cases}1 & \text { if unit } i \text { is at level } j \\ 0 & \text { otherwise }\end{cases}
$$

Use model.matrix to see representation in R

Completely Randomized Experiments (One-Way ANOVA)

Let $y_{i j}$ be j th observation on treatment $i, 1 \leq j \leq n_{i}, 1 \leq i \leq r$ ($n=\sum_{i=1}^{r} n_{i}$ is total sample size)

Model $y_{i j}=\mu_{i}+\epsilon_{i j}$ or $y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}$ where $\epsilon_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ (independent)
$\operatorname{LSE} \widehat{\mu}_{i}=\bar{y}_{i}=\frac{\sum_{i} y_{i j}}{n_{i}}=\widehat{\mu}+\widehat{\alpha}_{i}$.
Overdetermined, need a constraint:

- $\sum_{i} n_{i} \alpha_{i}=0$, leads to $\widehat{\mu}=\frac{\sum_{i} \sum_{i} y_{i j}}{n}=\bar{y}_{. .}, \widehat{\alpha}_{i}=\bar{y}_{i} .-\bar{y} .$.
- Set $\hat{\mu}=0, \hat{\alpha}_{i}=\bar{y}_{i}$.
- $\operatorname{Fix} \alpha_{1}=0, \hat{\mu}=\bar{y}_{1}$. $\hat{\alpha}_{i}=\bar{y}_{i} .-\bar{y}_{1}$.
- Last one is default in R but can change this with statements like op = options(contrasts = c("contr.helmert", "contr.poly"))

ANOVA Table

$$
\begin{aligned}
S S T O & =\sum_{i} \sum_{j}\left(y_{i j}-\bar{y} . .\right)^{2} \\
& =\sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{i .}\right)^{2}+\sum_{i} n_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2} \\
& =S S E+S S T R \\
(D F s:) \quad n-1 & =(n-r)+(r-1)
\end{aligned}
$$

Estimate $s^{2}=\frac{S S E}{n-r}$, test the null hypothesis H_{0} that all means are equal by

$$
F=\frac{S S T R /(r-1)}{S S E /(n-r)} \sim F_{r-1, n-r} \text { if } H_{0} \text { true. }
$$

Reject H_{0} at level α if $F>F_{r-1, n-r, 1-\alpha}$ (in R: qf (1-alpha, $\mathrm{r}-1, \mathrm{n}-\mathrm{r}$)

Testing Equality of Variances

Model $y_{i j} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right), i=1, \ldots, r, j=1, \ldots, n_{i}$, test $H_{0}: \sigma_{1}^{2}=\ldots=\sigma_{r}^{2}$

1. Likelihood Ratio Test

Estimate $\hat{\sigma}_{i}^{2}=\frac{\sum_{j}\left(y_{i j}-\bar{y}_{i}\right)^{2}}{n_{i}}, \hat{\sigma}^{2}=\frac{\sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{i}\right)^{2}}{n}$, define

$$
T=2 \log \frac{L_{1}}{L_{0}}=\sum_{i=1}^{r} n_{i} \log \frac{\widehat{\sigma}^{2}}{\widehat{\sigma}_{i}^{2}} \sim \chi_{r-1}^{2} \text { asymptotically }
$$

2. Bartlett's Modification (1937)
(a) Replace n_{i} by $n_{i}-1, n$ by $n-r$ in definitions of $\hat{\sigma}_{i}^{2}, \hat{\sigma}^{2}$ and T.
(b) Define $T^{\prime}=\left\{1+\frac{1}{3(r-1)} \sum_{i=1}^{r}\left(\frac{1}{n_{i}-1}-\frac{1}{n-r}\right)\right\}^{-1} T$
(c) If H_{0} true, $T^{\prime} \sim \chi_{r-1}^{2}$ approximately.

Round-robin test data

Laboratory i	n_{i}	Mean	S.D.	S_{i}	$\widehat{\alpha}_{i}$	S.E.
1	5	102.1	48.1	9254.44		
2	9	92.8	8.3	551.12		
3	4	97.2	8.6	221.88		
4	5	79.9	9.2	338.56		
5	5	87.0	4.8	92.16		
6	5	93.1	5.5	121.00		
7	5	82.2	4.4	77.44		
8	6	54.9	1.9	18.05		
9	5	94.0	8.3	275.56		
10	5	90.4	2.2	19.36		
11	5	84.7	5.7	129.96		

p-value for equality of variances: 1.3×10^{-12}
p-value for equality of means: 0.0007

Round-robin test data

Laboratory i	n_{i}	Mean	S.D.	S_{i}	$\widehat{\alpha}_{i}$	S.E.
	9	92.8	8.3	551.12		
2	4	97.2	8.6	221.88		
4	5	79.9	9.2	338.56		
5	5	87.0	4.8	92.16		
6	5	93.1	5.5	121.00		
7	5	82.2	4.4	77.44		
8	6	54.9	1.9	18.05		
9	5	94.0	8.3	275.56		
10	5	90.4	2.2	19.36		
11	5	84.7	5.7	129.96		

p-value for equality of variances: 0.05
p-value for equality of means: 7×10^{-13}

Round-robin test data

Laboratory i	n_{i}	Mean	S.D.	S_{i}	$\widehat{\alpha}_{i}$	S.E.
2	9	92.8	8.3	551.12	3.62	2.06
3	4	97.2	8.6	221.88	8.02	3.28
4	5	79.9	9.2	338.56	-9.28	2.90
5	5	87.0	4.8	92.16	-2.18	2.90
6	5	93.1	5.5	121.00	3.92	2.90
7	5	82.2	4.4	77.44	-6.98	2.90
9	5	94.0	8.3	275.56	4.82	2.90
10	5	90.4	2.2	19.36	1.22	2.90
11	5	84.7	5.7	129.96	-4.48	2.90

p-value for equality of variances: 0.18
p-value for equality of means: 0.003

Conclusions

- We threw out Lab 1 because the SD seemed obviously wrong - either Bartlett or Likelihood Ratio test decisively rejects hypothesis of equal variances
- We then threw out Lab 8 because the mean was discrepant - F-test decisively rejects hypothesis of equal means
- Among the rest, estimated treatment effect is significantly positive for Lab 3, negative for Labs 4 and 7
- However we could develop the last point in more detail with more formal multiple comparisons procedures - Least Significant Differences, Tukey test for pairwise differences, Scheffé test for contrasts (assuming equal variances)

Two-way ANOVA Without Interactions

$$
y_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j}, 1 \leq i \leq r, 1 \leq j \leq c .
$$

Assume $\sum_{i} \alpha_{i}=\sum_{j} \beta_{j}=0$ (but default in R is $\alpha_{1}=\beta_{1}=0$)
Equality of treatments $H_{0}: \alpha_{1}=\ldots=\alpha_{r}=0$
Equality of blocks $H_{0}^{\prime}: \beta_{1}=\ldots=\beta_{c}=0$
Typically, H_{0} is of interest but H_{0}^{\prime} is not
ANOVA decomposition:

$$
\begin{aligned}
\sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{. .}\right)^{2} & =\sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{i .}-\bar{y}_{. j}+\bar{y}_{. .}\right)^{2}+c \sum_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}+r \sum_{j}\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2} \\
& =\sum_{i} \sum_{j}\left(y_{i j}-\widehat{\mu}-\widehat{\alpha}_{i}-\widehat{\beta}_{j}\right)^{2}+c \sum_{i} \widehat{\alpha}_{i}^{2}+r \sum_{j} \widehat{\beta}_{j}^{2}, \\
S S T O & =S S E+S S T R+S S B \\
r c-1 & =(r-1)(c-1)+(c-1)+(r-1)
\end{aligned}
$$

F test for H_{0} :

$$
\frac{S S T R /(c-1)}{S S E /((r-1)(c-1))} \sim F_{c-1,(r-1)(c-1)} \text { if } H_{0} \text { true. }
$$

Two-way ANOVA With Interactions

Assume $t>1$ observations for each treatment-block pair

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\epsilon_{i j k}, 1 \leq i \leq r, 1 \leq j \leq c, 1 \leq k \leq t
$$

Assume $\sum_{i} \alpha_{i}=\sum_{j} \beta_{j}=0, \sum_{j} \gamma_{i j}=0$ for each $i, \sum_{i} \gamma_{i j}=0$ for each j.
$\widehat{\mu}=\bar{y}_{. . .}, \widehat{\alpha}_{i}=\bar{y}_{i . .}, \widehat{\beta}_{j}=\bar{y}_{. j .}, \widehat{\gamma}_{i j}=\bar{y}_{i j}$.
ANOVA decomposition becomes

$$
\begin{aligned}
S S T O & =S S E+S S I+S S T R+S S B \\
r c t-1 & =r c(t-1)+(r-1)(c-1)+(c-1)+(r-1)
\end{aligned}
$$

F test for no treatment effect:

$$
\begin{aligned}
\frac{S S T R /(c-1)}{S S E /(r c(t-1)} & \sim F_{c-1, r c(t-1)} \text { if no treatment effect } \\
\frac{S S I /((r-1)(c-1))}{S S E /(r c(t-1)} & \sim F_{(r-1)(c-1), r c(t-1)} \text { if no interaction. }
\end{aligned}
$$

What if $t=1$?

Tukey's 1DF Test for Additivity

Consider model

$$
y_{i j}=\mu+\alpha_{i}+\beta_{j}+\theta \alpha_{i} \beta_{j}+\epsilon_{i j}, 1 \leq i \leq r, 1 \leq j \leq c
$$

Assume $\sum_{i} \alpha_{i}=\sum_{j} \beta_{j}=0$, test $H_{0}: \theta=0$ against $H_{1}: \theta \neq 0$.
Define $z_{i j}=y_{i j}-\bar{y}_{i .}-\bar{y}_{. j}+\bar{y} .$. , then model
$z_{i j}=\theta a_{i} b_{j}+e_{i j}, e_{i j}$ random error, a_{i}, b_{j} known s.t. $\sum_{i} a_{i}=\sum_{j} b_{j}=0$.
Estimate $\hat{\theta}=\frac{\sum_{i} \sum_{j} z_{i j} a_{i} b_{j}}{\sum_{i} a_{i}^{2} \cdot \sum_{j} b_{j}^{2}}=\frac{\sum_{i} \sum_{j} y_{i j} a_{i} b_{j}}{\sum_{i} a_{i}^{2} \cdot \sum_{j} b_{j}^{2}}, \operatorname{Var}(\widehat{\theta})=\frac{\sigma^{2}}{\sum_{i} a_{i}^{2} \cdot \sum_{j} b_{j}^{2}}$.
Under $H_{0}, \frac{\hat{\theta}^{2} \sum_{i} a_{i}^{2} \sum_{j} b_{j}^{2}}{\sigma^{2}}=\frac{\left(\sum_{i} \sum_{j} y_{i j} a_{i} b_{j}\right)^{2}}{\sigma^{2} \sum_{i} a_{i}^{2} \sum_{j} b_{j}^{2}} \sim \chi_{1}^{2}$.

Tukey's 1DF Test for Additivity, Page 2

ANOVA decomposition

$$
\begin{aligned}
\sum_{i} \sum_{j} z_{i j}^{2} & =\sum_{i} \sum_{j}\left(z_{i j}-\hat{\theta} a_{i} b_{j}\right)^{2}+\hat{\theta}^{2} \sum_{i} a_{i}^{2} \sum_{j} b_{j}^{2} \\
S S I & =S S I E+S S G \\
(r-1)(c-1) & =(r c-r-c)+1
\end{aligned}
$$

Calculations show $S S G, S S I E$ are statistically independent (not trivial). Hence, if H_{0} true,

$$
\begin{equation*}
\frac{S S G}{S S I E /(r c-r-c)} \sim F_{1, r c-r-c} \tag{*}
\end{equation*}
$$

Now comes the key step: All this is true for any choices of a_{i}, b_{j}, therefore, in particular, it's true if we take $a_{i}=\hat{\alpha}_{i}, b_{j}=\widehat{\beta}_{j}$.

With this substitution, (*) gives an exact test.

Fisher's data on barley varieties

Place	Year	Manchuria	Svansota	Velvet	Trebi	Peatland	Row Mean
1	1931	81.0	105.4	119.7	109.7	98.3	102.82
1	1932	80.7	82.3	80.4	87.2	84.2	82.96
2	1931	146.6	142.0	150.7	191.5	145.7	155.30
2	1932	100.4	115.5	112.2	147.7	108.1	116.78
3	1931	82.3	77.3	78.4	131.3	89.6	91.78
3	1932	103.1	105.1	116.5	139.9	129.6	118.84
4	1931	119.8	121.4	124.0	140.8	124.8	126.16
4	1932	98.9	61.9	96.2	125.5	75.7	91.64
5	1931	98.9	89.0	69.1	89.3	104.1	90.08
5	1932	66.4	49.9	96.7	61.9	80.3	71.04
6	1931	86.9	77.1	78.9	101.8	96.0	88.14
6	1932	67.7	66.7	67.4	91.8	94.1	77.54
Col Mean		94.392	91.133	99.183	118.200	102.542	101.09

Two models considered here:

1. Two-way ANOVA with interactions, $t=2$ observations for each treatment-place combination (but ignoring possible year to year variation)
2. Treat each place \times year combination as a block, so we have 5 treatments, 12 blocks, 1 observation for each treatmentplace combination, but apply Tukey test for interaction

ANOVA Table for 2-way model with interactions (F-ratio for SSI is 0.48 , not significant)

SOURCE	SUM OF SQUARES	D.F.	MEAN SQUARE
SST	5309.97	4	$\mathbf{1 3 2 7 . 5}$
SSB	21220.90	5	4244.2
SSI	4433.02	20	221.7
SSE	13768.46	30	$\mathbf{4 5 8 . 9}$
Total	44732.35	59	F-ratio $\mathbf{2 . 8 9}$

ANOVA Table for Tukey's 1-DF test
(F-ratio for $S S G$ is $3.27, p=0.077$)

SOURCE	SUM OF SQUARES	D.F.	MEAN SQUARE
SST	5309.97	4	$\mathbf{1 3 2 7 . 5}$
SSB	31913.32	11	2901.2
SSG	531.09	1	531.1
SSIE	6977.97	43	$\mathbf{1 6 2 . 3}$
Total	44732.35	59	F-ratio $\mathbf{8 . 1 8}$

Plot of residuals vs. fitted values for barley data, 2-way model without interactions

Conclusions

- First model inadequate - ignores year to year variation, which masks the treatment effect.
- Second model seems OK - Tukey test accepts hypothesis of no interaction but the treatment effect is significant.
- However there are other possible models, e.g. model year effect explicitly as a 3-way ANOVA; make either the block effect or the interaction (or both) a random effect.
- Could also use Tukey multiple comparisons procedure to determine which pairwise treatment differences are significant.

