
The Lasso and Other Regularization Methods in Regression

Richard L. Smith

October 18, 2021

1 Introduction

The lasso method (least absolute shrinkage and selection operator) as we now know it was intro-
duced by Tibshirani [11] through there were precedents for it in both the signal processing [8]
and statistical [4, 1] literatures. It is conceptually similar to ridge regression [7]; in particular,
both methods result in shrinkage of the least squares estimates, with the aim of reducing the
mean squared error for both estimation and prediction by introducing some bias into the regression
estimators.

We assume a standard normal-theory linear regression model,

yi =
p∑
j=1

xijβj + εi, εi ∼ N [0, σ2] (independent) , i = 1, ..., n, (1)

which may also be written in matrix-vector notation as

y = Xβ + ε, ε ∼ Nn[0, σ2In]. (2)

One way to characterize ridge regression is to choose the parameter estimates β to solve the
optimization problem

Minimize (y −Xβ)T (y −Xβ) such that
∑
j

β2j ≤ t2 (3)

for some specified t > 0. To see that (3) leads to the usual form of the ridge regression estimate,
first rewrite (3) in Lagrangian form as

Minimize
∑
i

(yi −
∑
j

xijβj)
2 + λ

∑
j

β2j (4)

with λ a Lagrange multiplier, then differentiate with respect to βk, k = 1, ..., p to derive the normal
equations ∑

i

xik(yi −
∑
j

xijβj)− λβk = 0, k = 1, ..., p, (5)

which we also write in matrix notation as

XTy = (XTX + λIp)β̃
(λ), (6)

1

equivalent to the standard formula for β̃(λ). In the typical case when λ > 0, λ will be chosen to
exactly satisfy the constraint, i.e.

yTX(XTX + λIp)
−2XTy = t2, (7)

so (7) defines the relationship between t and λ. The fundamental idea of lasso regression is to
replace criterion (3) by:

Minimize (y −Xβ)T (y −Xβ) such that
∑
j

|βj | ≤ t. (8)

The equivalent “Lagrangian” form in this case is

Minimize
∑
i

(yi −
∑
j

xijβj)
2 + λ

∑
j

|βj | (9)

with some λ > 0.
Comparing (9) with (4), the fundamental change is to replace the `2 penalty λ

∑
j β

2
j with the

`1 penalty λ
∑
j |βj |.

Although the paper by Tibshirani [11] is usually cited as the source paper for the lasso concept,
there were a few precedents. Indeed, the basic formula (9) appears to have been first given by
[8] in connection with signal processing problems in seismology, where they argued that this is an
improvement on older algorithms in geophysics where both terms in (9) are based on the `1 norm.
However, the generality of this approach for statistical regression problems appears not to have
been recognized at the time.

Frank and Friedman [4] made a detailed comparison of ridge regression, PCR and PLS reges-
sion with ordinary least squares (OLS) regression (the usual least squares estimator without any
reduction of the model) and what they called VSS (variable subset selection) regression, i.e. OLS
regression with selection of variables through the techniques we have seen earlier, such as step-
wise or best subsets variable selection. They also suggested the idea of bridge regression, in which
the penalty function λ

∑
j β

2
j from (4) is replaced by λ

∑
j |βj |γ (the `γ penalty) for some γ > 0,

pointing out that γ = 2 is ridge regression while the limit γ → 0 is equivalent to VSS; they even
suggested the possibility of optimizing both λ and γ by cross-validation or some similar technique.
The special case γ = 1 is of course the lasso estimator, but Frank and Friedman did not give any
particular emphasis to that case.

Another precedent noted in [11] is the non-negative garotte suggested by Breiman [1], in which

the OLS regression coefficients β̂
(0)
j are shrunk by non-negative coefficients cj to minimize∑

i

(yi −
∑
j

xijcj β̂
(0)
j)2 subject to cj ≥ 0,

∑
j

cj ≤ t (10)

which is clearly a similar idea to the lasso.
The bridge regression idea has also been developed further by some authors. Fu [5] proposed

a general algorithm for bridge regression with γ ≥ 1 but did not consider the case γ < 1 because
in this case the objective function is non-convex. Much more recent work by Gorban et al. [6]
proposed a family of optimization algorithms based on piece-wise quadratic error potentials of
subquadratic growth (PQSQ potentials) which include general bridge regression as a special case
of a much larger class of objective functions.

2

However, probably the most widely applied generalization of lasso and ridge regression is the
elastic net idea which combines the two concepts,

Minimize
∑
i

(yi −
∑
j

xijβj)
2 + λ1

∑
j

|βj |+ λ2
∑
j

β2j (11)

which is equivalent, on writing α = λ2
λ1+λ2

, to solving the constrained minimization problem

Minimize (y −Xβ)T (y −Xβ) such that (1− α)
∑
j

|βj |+ α
∑
j

β2j ≤ t (12)

for some specified t > 0.
This was introduced by Zou and Hastie [12] as a generalization of lasso that retains some of the

features of ridge regression. They pointed out that ridge regression often outperforms lasso; that
lasso often leads to models with very few non-zero parameter estimates which can be a disadvantage
for very high-dimensional problems, especially when p > n, and that the elastic net estimator has
the potentially desirable property of including or excluding groups of high correlated predictors
together.

2 Properties of the Lasso Estimator

The simplest case, and almost the only one for which the estimator can be derived analytically, is
when X is orthonormal, i.e. XTX = Ip. Note that another way of writing this is

∑n
i=1 xijxjk = 1

if j = k and 0 if j 6= k. In this case the OLS estimator is β̂(0) = XTy. We can write the quadratic
term in (9) as ∑

i

(yi −
∑
j

xijβj)
2 =

∑
i

(y2i − 2
∑
j

yixijβj +
∑
j

∑
k

xijxikβjβk)

=
∑
i

y2i − 2
∑
j

β̂
(0)
j βj +

∑
j

β2j

=
∑
i

y2i −
∑
j

(β̂
(0)
j)2 +

∑
j

(βj − β̂(0)j)2

The optimization problem (9) therefore reduces to a series of optimization problems of the form

Minimize
∑
j

(βj − β̂(0)j)2 + λ|βj | (13)

It is readily checked that the solution of (13) for each j is

β̂j = sign(β̂
(0)
j)

(
β̂
(0)
j −

λ

2

)
+

(14)

where the sign x+ means the larger of x and 0. This is equivalent to the concept of “soft thresh-
olding” known in the theory of wavelets [2].

To see (14), it is sufficient to note that if β̂
(0)
j > 0 (the case β̂

(0)
j < 0 is exactly symmetrical),

the function (β − β̂(0)j)2 + λ|β| is minimized by β = β̂
(0)
j − λ/2 if β̂

(0)
j > λ/2 and 0 otherwise; see

Figure 1.

3

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

1
2

3
4

5
(a)

βj

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

1
2

3
4

5
6

7

(b)

βj

Figure 1: The function (βj − β̂(0)j)2 + λ|βj | plotted against βj . (a) λ = 1, β̂
(0)
j = 1, λ < 2β̂

(0)
j ,

minimum at βj = β̂
(0)
j − λ/2. (b) λ = 3, β̂

(0)
j = 1, λ > 2β̂

(0)
j , minimum at βj = 0.

Unfortunately, the non-orthogonal case cannot be derived directly from this result — unlike
the case with ridge regression, the penalty function is not invariant to rotations of the X space so
we cannot apply simple linear operations to make X orthonormal. Fortunately there are, by now,
numerous efficient algorithms for computing the general solution of the optimization (9) and its
extension (11).

Naturally, an important question is how to find the optimal value of t or equivalently λ. Tib-
shirani [11] proposed three ways of doing this. The simplest (conceptually if not computationally)
is cross-validation. Specifically, he proposed a five-fold cross-validation carried out at a sequence

of values of the normalized parameter s = t/
∑
|β̂(0)j |, with the value of s (or corresponding λ) that

minimizes the cross-validated mean squared prediction error taken as optimal.
The second method uses a generalized cross-validation of the form

GCV =
1

n

RSS(t)

(1− p(t)/n)2
(15)

with RSS(t) the residual sum of squares associated with the lasso estimator at t, and p(t) an
approximation to the “effective degrees of freedom”. (15) is quicker to compute than direct cross-
vaidation but harder to interpret in view of the approximations involved.

The third method proposed in [11] is an application of “Stein’s unbiased estimate of risk” [10]
but our impression is that this is not much used, so we omit any further discussion here.

3 Computation

A very complete set of R routines is in glmnet, documented in detail at https://glmnet.stanford.edu/.
This allows for the general elastic net formulation (12) with α ∈ [0, 1] specified by the user; the

4

x[,1]

F
re

q
u

e
n

c
y

−2 −1 0 1 2 3

0
5

1
0

2
0

x[,2]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2

0
5

1
0

2
0

x[,3]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2 3

0
5

1
0

2
0

x[,4]

F
re

q
u

e
n

c
y

−2 −1 0 1 2 3

0
5

1
5

x[,5]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2

0
5

1
5

2
5

x[,6]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2

0
5

1
0

x[,7]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2

0
5

1
5

x[,8]

F
re

q
u

e
n

c
y

−4 −3 −2 −1 0 1 2 3

0
5

1
0

2
0

x[,9]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2

0
5

1
5

x[,10]

F
re

q
u

e
n

c
y

−2 −1 0 1 2 3

0
5

1
5

x[,11]

F
re

q
u

e
n

c
y

−2 −1 0 1 2

0
5

1
5

x[,12]

F
re

q
u

e
n

c
y

−2 −1 0 1 2

0
5

1
0

2
0

x[,13]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2 3
0

5
1

5
2

5

x[,14]

F
re

q
u

e
n

c
y

−2 −1 0 1 2

0
5

1
0

1
5

x[,15]

F
re

q
u

e
n

c
y

−2 −1 0 1 2

0
5

1
5

x[,16]

F
re

q
u

e
n

c
y

−2 −1 0 1 2

0
5

1
0

2
0

x[,17]

F
re

q
u

e
n

c
y

−2 −1 0 1 2 3

0
5

1
5

x[,18]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2

0
5

1
0

2
0

x[,19]

F
re

q
u

e
n

c
y

−3 −2 −1 0 1 2 3

0
5

1
0

x[,20]

F
re

q
u

e
n

c
y

−2 −1 0 1 2 3

0
5

1
0

2
0

Figure 2: Histograms of the 20 covariates in the test data example.

limiting cases α = 1 (the default) and α = 0 corresponding to lasso regression and ridge regres-
sion respectively. The software also covers generalized linear models such as logistic or Poisson
regression.

As an example, we first show results for the test dataset used to illustrate the package
(https://glmnet.stanford.edu/). This can be loaded with the R commands

library(glmnet)

data(QuickStartExample)

This loads the pre-stored test datasets in two objects labelled x and y. Here x is a 100 × 20
matrix of covariates and y is a 100 × 1 vector of responses. The challenge is to find the optimal
linear predictor of y from x.

Although this dataset appears to have been deliberately constructed to illustrate the workings
of glmnet, in a typical “real” dataset this will not be the case, so some basic initial examination of
the data seems appropriate.

One question is whether there should be a transformation of any of the x variables. In Figure
2, we have shown histograms of each of the 20 potential covariates (i.e. the 20 columns of the x

matrix), and 3 shows boxplots and a stripchart of the same 20 variables. These show that each of
these variables has an approximately normal distributions and there are no obvious outliers; thus,
use of untransformed x values seems appropriate. We also looked at a histogram of the y values
and scatterplots of y against eachx column (not shown here); these also show an approximately

5

X1 X3 X5 X7 X9 X11 X13 X15 X17 X19

−
3

−
2

−
1

0
1

2
3

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

0

X
1

1

X
1

2

X
1

3

X
1

4

X
1

5

X
1

6

X
1

7

X
1

8

X
1

9

X
2

0

−3

−2

−1

0

1

2

3

Figure 3: Boxplots and stripchart of the 20 covariates in the test data example.

normal shape for y and no obvious nonlinearities in the relationship between y and any of the x

variables (these plots are not shown).
It should be noted that we have not done any scaling of the x matrix here. Another option

would be to write x=scale(x) to scale all the covariates to mean 0 and standard deviation 1; in
this example the x variables are not pre-scaled, but there are also no strong differences of scale (the
20 sample means range from –0.272 to +0.206, the 20 standard deviations from 0.887 to 1.106). In
a real dataset, some initial scaling of the covariates should definitely be considered.

Another issue to consider is whether there is multicollinearity in the data. Write the eigenvalues
of XTX (in R notation: t(x)% * % x) as δ1 ≥ δ2 ≥ . . . ≥ δp. The condition number of XTX is
defined to be

κ =

√
δ1
δp

(16)

(see [3], p. 106). The larger κ, the more collinear the data (a value κ > 30 is considered larger).
We can also consider the secondary values κi =

√
δ1/δi for i < p to indicate possible further

collinearities beyond the largest one; these are called variance inflation factors or VIFs in [3]; note
that [9], Section 5.2.2, give a slightly different definition of VIFs but also define condition indices
which are essentially the same as the VIFs given here. Whatever precise name is used, these are
all measures of the instability of the XTX matrix and therefore help assess whether shrinkage by
ridge regression or lasso is likely to be helpful. Note that in the case of ridge regression, where the

6

0 2 4 6

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

L1 Norm

C
o
e
ff
ic

ie
n
ts

0 6 7 9
glmnet test dataset

λ = 0.0757

∑ βj = 6.076

Figure 4: Result of plot fit for the test dataset. The vertical bar and accompanying test were
added to the main plot and shows the optimal value of λ (0.0757) and

∑
j |βj | (6.076) as determined

by leave-one-out cross-validation.

matrix XTX is replaced by XTX + λIp before inverting, the condition number (16) is replaced by

κλ =
√
δ1 + λ/δp + λ which could be much smaller if κ is large. This argument could also be used

to give some idea of the appropriate range of λ to consider; at a minimum, it needs to be large
enough that κλ is substantially smaller than κ.

All these calculations are preliminary to the main analysis with this example; the eigenvalues
decrease from 188.3 to 36.8, for κ = 2.3, which indicates no major issue with multicollinearity,
though of course there may still be advantages in applying the lasso or ridge regression methods.

We now turn to glmnet itself; a good starting point is the commands

fit=glmnet(x,y)

plot(fit)

which produces the plot in Figure 4, except for the vertical line near the right hand side, which
will be explained later.

The interpretation of the plot is as follows. Reading from left to right, starting from t =∑
j |βj | = 0, we initially have precisely one non-zero βj . As t =

∑
|βj | (“L1 Norm” in the plot)

increases, we see that the number of non-zero parameter estimates increases, until at the right hand
end of the plot, all 20 parameters are present. These estimates are given in the fit$beta matrix
(with 20 rows, 67 columns) that correspond to 67 values of λ, given by fit$lambda. For example,

7

the parameters in column 10 are given by

> fit$beta[,10]

V1 V2 V3 V4 V5 V6 V7

0.84797353 0.00000000 0.04902347 0.00000000 -0.24689473 0.10589979 0.00000000

V8 V9 V10 V11 V12 V13 V14

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 -0.69202504

V15 V16 V17 V18 V19 V20

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 -0.30436207

with six non-zero parameter estimates, that corresponds to

> fit$lambda[10]

[1] 0.705918

One point that should be made about all these model fits: although we have not distinguished
between the intercept and the other regression parameters in our theoretical discussion, all the
models discussed so far include an intercept (in other words, the intercept is not included in∑
|βj |). The vector of 67 intercepts is given by

> fit$a0

s0 s1 s2 s3 s4 s5 s6 s7

0.6607581 0.6312350 0.5874616 0.5475769 0.5112354 0.4781224 0.4457983 0.4134041

...

s64 s65 s66

0.1112088 0.1110190 0.1108457

It makes sense that this is the default option, because otherwise a simple shift of all the y values
could radically change the model fit; however, glmnet does contain an option to omit the intercept,
given by intercept=F.

Now let’s talk about how to determine the optimal value of λ. One point should be made clear
up front: there is no optimal value. It depends, in part, on the loss function used to measure fit, but
the default in glmnet is type.measure="deviance", which uses mean squared error for Gaussian
models, also represented as type.measure="mse". The cv.glmnet function estimates the optimal
λ by cross-validation. A key option here is nfolds, given the number of “folds” (i.e. partitions of
the data) used for cross-validation. The extreme case here is to set nfolds equal to the number
of observations in the dataset, which is also known as “leave-one-out cross-validation”: for each
candidate value of λ, the model fit is repeated with one observation left out at a time, and the
resulting prediction errors combined into an overall mean squared error for prediction; the λ with
the lowest MSE is declared optimal. It should be noted that the default value of nfolds is 10,
and the glmnet documentation explicitly recommends against setting nfolds equation to n, the
total sample size, presumably because the computation time would be excessive when n s large.
However, taking nfolds equal to 10 does have the slightly disconcerting feature that the result of
cv.glmnet is (slightly) different each time the function is applied, presumably because the function
is randomly choosing the 10-fold splits, so here we do use the leave-one-out method which avoids
that inconvenience:

8

cvfit=cv.glmnet(x,y,nfolds=100)

cvfit$lambda.min

which(fit$lambda==cvfit$lambda.min)

which produces outpout

> cvfit=cv.glmnet(x,y,nfolds=100)

Warning message:

Option grouped=FALSE enforced in cv.glmnet, since < 3 observations per fold

> cvfit$lambda.min

[1] 0.07569327

> which(fit$lambda==cvfit$lambda.min)

[1] 34

We can find the corresponding regression coefficients (which includes the intercept) by typing

> coef(cvfit, s = "lambda.min")

21 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 0.14867414

V1 1.33377821

V2 .

V3 0.69787701

V4 .

V5 -0.83726751

V6 0.54334327

V7 0.02668633

V8 0.33741131

V9 .

V10 .

V11 0.17105029

V12 .

V13 .

V14 -1.07552680

V15 .

V16 .

V17 .

V18 .

V19 .

V20 -1.05278699

and we can find the corresponding L1 norm (without the intercept) by

> sum(abs(coef(cvfit, s = "lambda.min")[2:21]))

[1] 6.075728

This is the t value that determines the vertical straight line in Figure 4. Alternatively, since we
have already seen that which(fit$lambda==cvfit$lambda.min) produces the answer 34, we could
find the same coefficients with the commands fit$a0[34] and fit$beta[,34].

9

One thing that seems to be lost here is that there is nothing corresponding to the standard error
of an individual βj estimate. However, since the whole procedure is predicated on mean squared
prediction error, it may be that this is the most meaningful way to evaluate uncertainty. The
function cvfit$cvm gives estimates of the mean squared prediction error at each evaluated value
of λ, and cvfit$cvsd is an estimate of the standard deviation of that estimate (presumably, based
on the variation in the nfolds individual estimates of prediction error). In this case, we note that

> cvfit$cvm[34]

s33

1.021887

> cvfit$cvsd[34]

s33

0.1269369

so at the supposed optimal λ, the estimated MSPE is 1.02 with a standard deviation of 0.13.
Before leaving this example, we want to discuss one other thing: what about other values of α

(the parameter that determines the mix between lasso and ridge regression). For example, setting
α = 0.2 (the default in glmnet is 1) is a lot closer to ridge regression. In that case we enter

fit=glmnet(x,y,alpha=0.2)

cvfit=cv.glmnet(x,y,alpha=0.2,nfolds=100)

cvfit$lambda.min

coef(cvfit, s = "lambda.min")

which(fit$lambda==cvfit$lambda.min)

In that case we find

> cvfit$lambda.min

[1] 0.1638291

> coef(cvfit, s = "lambda.min")

21 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 0.15802821

V1 1.30156479

V2 0.01665947

V3 0.69691040

V4 .

V5 -0.84135177

V6 0.57430374

V7 0.07950233

V8 0.35196779

V9 .

V10 0.04885985

V11 0.21204443

V12 -0.02439286

V13 -0.01500440

V14 -1.07433517

10

0.0 0.2 0.4 0.6 0.8

−
0
.1

5
−

0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

L1 Norm

C
o
e
ff
ic

ie
n
ts

0 3 5 8 10

Figure 5: Result of glmnet for the nuclear power data

V15 -0.05465064

V16 .

V17 .

V18 0.02529988

V19 .

V20 -1.06601593

> which(fit$lambda==cvfit$lambda.min)

[1] 43

> cvfit$cvm[43]

s42

1.09767

so there are indeed many more non-zero parameter estimates than in the lasso case, but the final
mean squared prediction error (1.097..) is larger than the 1.02 we found with lasso so it looks as
though lasso really is better, in this case. However, we could of course try other values of α.

3.1 Nuclear power data

Now let’s go back to our old friend, the nuclear power data. Recall that in our earlier analysis of
the data frame nukes we found

> lm4=lm(LC~D+LT1+LT2+LS+PR+NE+CT+BW+LN+PT,nukes)

11

> lm5=lm(LC~D+LS+NE+CT+LN+PT,nukes)

> anova(lm4,lm5)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 21 0.56803

2 25 0.63374 -4 -0.065714 0.6074 0.6617

> summary(lm5)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -13.26031 3.13950 -4.224 0.000278 ***

D 0.21241 0.04326 4.910 4.70e-05 ***

LS 0.72341 0.11882 6.088 2.31e-06 ***

NE 0.24902 0.07414 3.359 0.002510 **

CT 0.14039 0.06042 2.323 0.028582 *

LN -0.08758 0.04147 -2.112 0.044891 *

PT -0.22610 0.11355 -1.991 0.057490 .

Residual standard error: 0.1592 on 25 degrees of freedom

Multiple R-squared: 0.8569, Adjusted R-squared: 0.8225

in which the original ten covariates in model lm4 were reduced by backward selection to six in lm5,
and an anova test of one model against the other produced a p-value of 0.66, indicating that no
significant effects were lost in reducing to the 6-covariate model. Now, let’s see what lasso has to
say about this dataset.

Although in our earlier analysis we already had a fair amount of discussion of possible trans-
formations in the dataset, it is worth repeating some of the checks that were done with the test
dataset, since lasso and ridge regression analyses are more sensitive to scaling issues than standard
least squares regression. In fact, for this dataset the means of the x variables range from 0.187 to
66.58, and the standard devations from 0.17 to 1.01, which does suggest the need for some rescaling.
Moreover, the eignvalues of XTX turn out to be

> eigen(t(x) %*% x)$val

[1] 1.528427e+05 3.055580e+01 1.030780e+01 7.141386e+00 6.321334e+00 4.694459e+00

[7] 2.689490e+00 1.972372e+00 6.079432e-01 3.352477e-01

which implies a condition number of 675, not good! However, a simple scaling seems to resolve
this:

> x=scale(x)

> eigen(t(x) %*% x)$val

[1] 88.724641 51.202706 40.648161 38.845486 27.545258 23.451593 21.328418 8.045346

[9] 6.785769 3.422623

>

> sqrt(eigen(t(x) %*% x)$val[1]/eigen(t(x) %*% x)$val[10])

[1] 5.091463

which is much better! As a side comment, sometimes problems with multicollinearity and high
condition numbers can be resolved with simple rescaling operations, but the estimates could still
be improved with shrinkage methods.

Let’s repeat the lasso steps for this dataset:

12

fit=glmnet(x,y)

cvfit=cv.glmnet(x,y,nfolds=32)

plot(cvfit)

coef(cvfit, s = cvfit$lambda.min)

sum(abs(coef(cvfit, s = cvfit$lambda.min)[2:11]))

plot(fit)

lines(c(0.503,0.503),c(-10,10))

where the optimal L1 Norm of 0.503 comes from

> sum(abs(coef(cvfit, s = cvfit$lambda.min)[2:11]))

[1] 0.5027698

and the coefficients of the lasso estimator are

> coef(cvfit, s = cvfit$lambda.min)

11 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 6.067176261

V1 0.131257531

V2 .

V3 0.001075573

V4 0.134011975

V5 .

V6 0.059304260

V7 0.036004694

V8 .

V9 .

V10 -0.141115757

The two plots produced here are in Figure 5 and Figure 6.
In contrast, the OLS fit with the same covariates is

> summary(lm6)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.06718 0.02964 204.707 < 2e-16 ***

x[, c(1, 3, 4, 6, 7, 10)]1 0.17396 0.03827 4.546 0.000121 ***

x[, c(1, 3, 4, 6, 7, 10)]2 0.04452 0.03557 1.251 0.222351

x[, c(1, 3, 4, 6, 7, 10)]3 0.15117 0.03212 4.706 7.98e-05 ***

x[, c(1, 3, 4, 6, 7, 10)]4 0.08890 0.03194 2.784 0.010087 *

x[, c(1, 3, 4, 6, 7, 10)]5 0.05723 0.03209 1.783 0.086688 .

x[, c(1, 3, 4, 6, 7, 10)]6 -0.14480 0.03789 -3.822 0.000781 ***

Residual standard error: 0.1677 on 25 degrees of freedom

Multiple R-squared: 0.8413, Adjusted R-squared: 0.8032

which shows, in every case, a smaller estimate (in absolute value) under the lasso estimate than
the least squares estimate, except for the intercept which stays the same.

It’s worth checking out the cross-validated MSPE:

13

−7 −6 −5 −4 −3 −2

0
.0

5
0
.1

0
0
.1

5

Log(λ)

M
e
a
n
−

S
q
u
a
re

d
 E

rr
o
r

10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 7 6 5 5 5 5 4 4 4 3 3 2 2 0

Figure 6: Result of cv.glmnet for the nuclear power data

> cvfit$cvm[which(fit$lambda==cvfit$lambda.min)]

0.03827464

How does this compare with the least squares estimates? We repeat the lasso analysis with just
the six selected covariates:

fit1=glmnet(x[,c(1,3,4,6,7,10)],y)

cvfit1=cv.glmnet(x[,c(1,3,4,6,7,10)],y,nfolds=32)

In this case, the model is evaluated at 60 values of λ, and if we print out the values for the smallest
λ (nearest to the least squares estimates) we find

fit1$beta[,60]

V1 V2 V3 V4 V5 V6

0.17244622 0.04298682 0.15056627 0.08785952 0.05648051 -0.14468237

> cvfit1$cvm[60]

0.03783014

nearly but not exactly the same as the least squares parameter estimates, and a very slightly smaller
value of the cross-validated MSPE (0.0378 compared with 0.0383 for the lasso estimator).

So maybe the least squares variable selection procedure is better after all!
To be continued...

14

References

[1] Leo Breiman. Better subset regression using the nonnegative garrote. Technometrics,
37(4):373–384, 1995.

[2] D. Donoho and I. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika,
81:425–455, 1994.

[3] J.J. Faraway. Linear Models with R. Second Edition. Chapman and Hall/CRC Press, Boca
Raton, Florida, 2014.

[4] I. Frank and J. Friedman. A statistical view of some chemometrics regression tools (with
discussion). Technometrics, 35(2):109–148, 1993.

[5] Wenjiang J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computational
and Graphical Statistics, 7(3):397–416, 1998.

[6] A.N. Gorban, E.M. Mirkes, and A. Zinovyev. Piece-wise quadratic approximations of arbitrary
error functions for fast and robust machine learning. Neural Networks, 84:28–38, 2016.

[7] Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12(1):55–67, 1970.

[8] Fadil Santosa and William W. Symes. Linear inversion of band-limited reflection seismograms.
SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.

[9] R.L. Smith and K.D.S. Young. Linear Regression. Course Notes, University of North Carolina,
20??

[10] C. Stein. Estimation of the mean of a multivariate normal distribution. Annals of Statistics,
9:1135–1151, 1981.

[11] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[12] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society. Series B (Statistical Methodology), 67(2):301–320, 2005.

15

