
STOR 664: FALL 2021
Final Exam, December 9, 2021

This is an open-book, remote-learning exam. Access to course materials and standard compu-
tational tools (in particular, R) is allowed; communication with other students or with anybody
via the internet, other than the instructor, is not. The university Honor Code is in effect at all
times. Answers may be given in any of the following formats (including combinations of more than
one): R Markdown, Word, Latex or handwritten pages scanned or photographed; if handwritten,
it is recommended you use blue or black ink on plain sheets of white paper. They should then
be uploaded in gradescope. The exam is worth 100 points total, 50 for each of the two questions.
Points for each part-question are stated below. Although the questions are intended to be answered
in sequence, you may write out your answers in any order and errors in one part-question will not
prevent you gaining full credit in other parts of the same question. Attempt all questions.

1. Consider a response surface design with the center point removed:

The diagonal line is to indicate that we will be interested in predicting the surface at points
(t,−t) where t is arbitrary.

(a) Consider the standard response surface model:

yi = β0 + β1xi1 + β2xi2 + β11x
2
i1 + β12xi1xi2 + β22x

2
i2 + εi, i = 1, . . . , 8 (1)

with εi ∼ N [0, σ2] (mutually independent) as usual. Here, xi1 takes the values
(−1, 0, 1,−1, 1,−1, 0, 1) in some order, and xi2 is similar.

Writing this model in the form y = Xβ + ε, specify X, XTX and (XTX)−1. (For the
inverse, you are allowed and encouraged to use R or some other language for matrix
computations, such as matlab.) [5 points]
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(b) Consider the same model with β12 removed:

yi = β0 + β1xi1 + β2xi2 + β11x
2
i1 + β22x

2
i2 + εi, i = 1, . . . , 8. (2)

For this model also, specify X, XTX and (XTX)−1. [5 points]

(c) Now suppose we want to predict the response surface at a point x∗1 = t, x∗2 = −t,
assuming the equation (1) with xi1, xi2, εi replaced by x∗1, x

∗
2, ε

∗ with ε∗ indepen-
dent of εi, i = 1, . . . , 8. Show that under model (1), the prediction error variance is
(27t4−32t2+27)σ2

12 , and find the corresponding formula under model (2). [5 points]

(d) Suppose model (1) is the true model with β12 6= 0 but we erroneously use model (2) for
the analysis. What will be the bias of the predictor at the point x∗1 = t, x∗2 = −t? [5
points]

(e) Hence show that the mean squared error (sum of squared bias and variance) is smaller
when using model (2) than model (1) if and only if 4β212 < σ2. [5 points]

(f) Now suppose the data as follows:

i xi1 xi2 yi
1 –1 –1 0.78
2 –1 0 –0.09
3 –1 1 1.62
4 0 –1 2.03
5 0 1 2.05
6 1 –1 5.69
7 1 0 4.18
8 1 1 4.49

See file respsurf.csv on sakai. Either directly from the standard formula for β̂, or
using the lm command in R, calculate the estimates β̂ and write down an estimate for
the covariance matrix of β̂. (There is no need to write out the covariance matrix in full:
you can express it in terms of the expression for (XTX)−1 given earlier.) [5 points]

(g) Suppose we want to estimate the response function at a point x∗1 = t, x∗2 = −t, as in the
earlier parts of the question. Show that the response function is of the form A+Bt+Ct2

where A, B, C are functions of β0, β1, . . . , β22 (which you should specify). Based on
your regression estimates and their estimated covariance matrix, calculate estimates Â
for A, B̂ for B, Ĉ for C, together with the variances and covariances. [6 points]

(h) Now suppose we are trying to find a value t∗ that minimizes A + Bt + Ct2. Based on
your answer to part (g), find an estimate of t∗, an approximation to its standard error
using the delta method, and hence an approximate 95% confidence interval for t∗. [7
points]

(i) Use Fieller’s method to calculate an alternative 95% confidence interval for t∗, and
compare with your result in (h). [7 points]

2. This example is based on the presidential election vote in Florida in 2000. The example is
discussed extensively in Chapter 6 of Smith & Young, but you don’t need to look at that
because the analysis you are asked to do here is totally different.
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Download the dataset fldat.csv from sakai and load it through some command of the form
(insert your own path name)

fl=read.csv(’.../fldat.csv’)

One of the numerous controversies generated by this election was the vote for the Reform
Party candidate Pat Buchanan in Palm Beach County, which at 3,407 votes was far larger
than he could have expected based on his overall showing in the election. This was widely
attributed to the notorous “butterfly ballot” which allegedly misled voters who intended to
vote for the Democrat Al Gore to vote by mistake for Buchanan. In this study, we aim to
predict Buchanan’s vote in Palm Beach from the votes in the other 65 counties.

The data we are going to examine here consist of the following variables:

The response variable will be the “arc sine square root” transformation of the proportion of

vote for Buchanan: y = arcsin
√

Vbuch
Vtot

where Vbuch and Vtot are, respectively, the number of
votes for Buchanan and the total number of votes cast in a given county. In the case of Palm
Beach County, these numbers are respectively 3,407 and 432,286. (An explanation of this
transformation is given on page 231 of Smith & Young, but again, it’s not necessary for you
to look at that. This is different from any of the transformations considered in Chapter 6 of
Smith & Young.)

Palm Beach county is row 50 of the dataset. The objective of the exercise is to fit a regression
model for y from the other 65 counties (i.e. omitting row 50), and then use that to predict y
and hence the number of Buchanan votes in Palm Beach County itself, as if nothing unusual
had happened in Palm Beach. All preceding analyses of this dataset produced predicted
votes that were well under 3,407: your task here is to see whether that remains true under
the proposed new analyses.
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For each of parts (a) through (f), show how the indicated method of analysis is applied and
use it to predict Buchanan’s vote in Palm Beach county based on the other 65 counties. Your
prediction should be accompanied by a 95% (or other percent) prediction interval for the
methods where such a calculation is appropriate. Finally you are asked to summarize your
conclusions.

(a) Simple regression of y on the 11 covariates. Your analysis should include some discussion
of model fit and diagnostics but need not go into great detail about that. [5 points]

(b) Variable selection, i.e. start with all 11 covariates and reduce them by one of the recog-
nized methods of variable selection. There is no requirement to use a particular method
but you should describe carefully what you do. [8 points]

(c) Principal components regression. Use cross-validation or some other technique (which
you should describe) to determine the number of components. [8 points]

(d) Partial least squares regression. Use cross-validation or some other technique (which
you should describe) to determine the number of components. [8 points]

(e) Ridge regression. Use cross-validation or some other technique (which you should de-
scribe) to determine the optimal tuning parameter. [8 points]

(f) Lasso regression. Use cross-validation or some other technique (which you should de-
scribe) to determine the optimal tuning parameter. [8 points]

(g) Briefly summarize your conclusions from this whole exercise. Do all the methods lead
to comparable answers? Would any one of them stand out as best in your opinion? [5
points]
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SOLUTIONS

1. (a) We have

X =



1 −1 −1 1 1 1
1 −1 0 1 0 0
1 −1 1 1 −1 1
1 0 −1 0 0 1
1 0 1 0 0 1
1 1 −1 1 −1 1
1 1 0 1 0 0
1 1 1 1 1 1


, XTX =



8 0 0 6 0 6
0 6 0 0 0 0
0 0 6 0 0 0
6 0 0 6 0 4
0 0 0 0 4 0
6 0 0 4 0 6


, (XTX)−1 =

1

12



15 0 0 −9 0 −9
0 2 0 0 0 0
0 0 2 0 0 0
−9 0 0 9 0 3

0 0 0 0 3 0
−9 0 0 3 0 9


. (3)

(b) Writing X1 instead of X to keep the two models separate, X1 is the same as X but with
the fifth column deleted, then

XT
1 X1 =


8 0 0 6 6
0 6 0 0 0
0 0 6 0 0
6 0 0 6 4
6 0 0 4 6

 , (XT
1 X1)

−1 =
1

12


15 0 0 −9 −9
0 2 0 0 0
0 0 2 0 0
−9 0 0 9 3
−9 0 0 3 9

 . (4)

Note that all the entries of (XT
1 X1)

−1 are the same as those of (XTX)−1, but with
the fifth row and the fifth column deleted. This is because the fifth column of X is
orthogonal to all the other columns, therefore, deleting that column does not affect the
other entries of (XTX)−1.

(c) The prediction error variance is (1 + cT (XTX)−1c)σ2 where

cT (XTX)−1c =
1

12

(
1 t −t t2 −t2 t2

)


15 0 0 −9 0 −9
0 2 0 0 0 0
0 0 2 0 0 0
−9 0 0 9 0 3

0 0 0 0 3 0
−9 0 0 3 0 9





1
t
−t
t2

−t2
t2



=
1

12

(
15− 18t2 2t −2t −9 + 12t2 −3t2 −9 + 12t2

)


1
t
−t
t2

−t2
t2


=

15− 18t2 + 2t2 + 2t2 − 9t2 + 12t4 + 3t4 − 9t2 + 12t4

12

=
15− 32t2 + 27t4

12
.

Adding 1 and multiplying by σ2, we get the formula given.
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The corresponding result under model (2) has exactly the same terms except for the
fifth row and column, which contributed +3t2 in the second last line above. Therefore,

the result in this case is (24t4−32t2+27)σ2

12 .

(d) If model (2) is assumed when model (1) is correct, then each of the estimators β̂0, β̂1, . . .
will be exactly the same as they would be under (1) and therefore unbiased (this is an
important part of the answer, and is true because of the orthogonality between the fifth
column and the other columns of X). Therefore, the only bias arises from the β12 term,
where we insert xi1 = t, xi2 = −t in the expected response β0 +β1xi1 +β2xi2 +β11x

2
i1 +

β12xi1xi2 + β22x
2
i2. Hence the bias is β12t

2.

(e) If the assumed model is (1), then there is no bias and the mean squared prediction error

(MSPE) is the same as the prediction error variance, i.e. (27t4−32t2+27)σ2

12 . If the assumed
model is (2), then the MSPE is the sum of the prediction error variance and squared

bias, i.e. (24t4−32t2+27)σ2

12 + β212t
4. Model (2) is preferred when (24t4−32t2+27)σ2

12 + β212t
4 <

(27t4−32t2+27)σ2

12

(f) Fitting by the standard lm command yields the output

lm(y~x1+x2+I(x1^2)+I(x1*x2)+I(x2^2))

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.94000 0.19600 4.796 0.04083 *

x1 2.00833 0.07157 28.061 0.00127 **

x2 -0.05667 0.07157 -0.792 0.51149

I(x1^2) 1.10500 0.15182 7.278 0.01836 *

I(x1 * x2) -0.51000 0.08765 -5.818 0.02829 *

I(x2^2) 1.10000 0.15182 7.245 0.01852 *

...

Residual standard error: 0.1753 on 2 degrees of freedom

so the coefficient estimates are β̂0 = 0.94, β̂1 = 2.00833, . . . and the estimated covariance
matrix of the estimators is 0.17532(XTX)−1 where (XTX)−1 is as in (3). [In the event
that you chose to fit model (2), the parameter estimates would be the same except for
I(x1 * x2) and the covariance matrix would be given by (XT

1 X1)
−1s2 with (XT

1 X1)
−1

from (4) and now s = 0.6060436.]

(g) β0 + β1t − β2t + β11t
2 − β)12t2 + β22t

2 so A = β0, B − β1 − β2, C = β11 − β12 + β22.
Hence the estimators are

 Â

B̂

Ĉ

 =

 1 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 1




0.94
2.00833
−0.05667

1.105
−0.51

1.1


=

 0.94
2.065
2.715


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with estimated covar1ance matrix 1 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 1

 (XTX)−1

 1 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 1


T

s2

=

 0.03841667 0 −0.0461
0 0.0102444 0

−0.0461 0 0.06915

 .
(h) The minimium of A + Bt + Ct2 (assuming C > 0) is achieved at t∗ = − B

2C so
this is estimated as − 2.065

2×2.715 = −0.3802947. By the delta method, the variance is(
1
2C

)2
Var(B̂)−2 · 1

2C ·
B

2C2 ·Cov(B̂, Ĉ)+
(

B
2C2

)2
Var(Ĉ) which is estimated (substituting

B̂ for B, Ĉ for C) as
(

1
2×2.715

)2
× 0.0102444 +

(
2.065

2×2.7152

)2
× 0.06905 = 0.04132. Noting

also that qt(0.975,2)=4.303, we have an approximate 95% confidence interval for t∗

which is −0.3803± 4.303× 0.0413 = (−0.558,−0.203).

(i) For a given t, a hypothesis test of H0 : B + 2Ct = 0 would reject when

|B̂ + 2Ĉt|√
V̂ar(B̂) + 4t2V̂ar(Ĉ)

> qt(0.975, 2) (5)

where V̂ar is estimated variance (we ignore the covariance between B̂ and Ĉ because we
know that is 0). Substituting the various estimate, equality in (5) is achieved when

(2.065 + 2× 2.2715× t)2 = 4.3032(0.0102444 + 4× t2 × 0.06915)

which reduced to the quadratic equation

24.3634t2 + 22.4259t+ 4.07455 = 0

and this quadratic equation has roots
(-22.4259+c(-1,1)*sqrt(22.4259*22.4259-4*24.3634*4.07455))/(2*24.3634)=-0.6713723

and -0.2491026.

So the 95% confidence interval by Fieller’s method is (–0.671,–0.249), which does differ
somewhat from the delta method interval given in (h).

Remark. I’ve written out this calculation “longhand” to show exactly how the method
works, but the following R code is one way to get the answer much more quickly:

lm1=lm(y~x1+x2+I(x1^2)+I(x1*x2)+I(x2^2))

summary(lm1)

B=lm1$coef[2]-lm1$coef[3]

C=lm1$coef[4]-lm1$coef[5]+lm1$coef[6]

est=-B/(2*C)

V=solve(t(X)%*%X)

vbb=V[2,2]+V[3,3]-2*V[2,3]

vcc=V[4,4]+V[5,5]+V[6,6]-2*V[4,5]-2*V[5,6]+2*V[4,6]
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vbc=V[2,4]-V[2,5]+V[2,6]-V[3,4]-V[3,5]+V[3,6]

# delta method

sest=sqrt(vbb/(4*C*C)+vcc*(B/(2*C^2))^2)*summary(lm1)$sigma

print(est+c(-qt(0.975,2),0,qt(0.975,2))*sest)

# Fieller method

q=qt(0.975,2)

s=summary(lm1)$sigma

a=4*(C*C-q*q*s*s*vcc)

b=4*B*C

c=B*B-q*q*s*s*vbb

(-b+c(-1,1)*sqrt(b*b-4*a*c))/(2*a)

which gives almost the same answer. Your answer will almost inevitably differ slightly
from mine because of rounding errors, but the major difference between the two methods
is not due to rounding error.

2. (a) Reading the data frame fl as stated in the question, the commands

lm1=lm(y~lpop+whit+lblac+lhisp+o65+hsed+coll+inco+pbush+pbrow+pnade,fl,subset=-50)

pr1=predict(newdata=fl[50,],lm1,interval=’prediction’)

sin(pr1)^2*432286

produce a predicted Buchanan vote of 329.8 and a 95% prediction interval of (0,1482)
(compared with actual value of 3407). In this case the predicted lower bound of y is
negative, which is impossible, so I have set to 0 for the prediction interval calculation.

[Side comment here: in fact this model does not fit the data so well, since a residual
plot confirms the residuals are heavily right-skewed. I don’t actually think the arc since
square root transformation is very good here, which is why I didn’t use it in the original
paper that I published on this dataset, but I wanted to try something different for an
exercise here.]

(b) The simplest approach is just to use the step command in R, when

lm2=step(lm1)

pr2=predict(newdata=fl[50,],lm2,interval=’prediction’)

sin(pr2)^2*432286

reduces to the model with variables lpop + whit + lhisp + inco + pnade, and an
estimated Buchanan vote of 276.8 and a 95% prediction interval (0,1219) (the lower
bound is 0 for the same reason as in the first analysis). Of course, alternative methods
of variable selection are also fully justified.

(c) Use of pcr(...,validation=’LOO’) and RMSEP within library(pls) leads to

# Comp. 1 2 3 4 5 6 7 8 9 10
Prediction 160 131 231 277 289 205 300 331 249 306

RMSEP ×100 1.649 1.653 1.639 1.590 1.621 1.340 1.292 1.293 1.302 1.338

(d) Use of plsr(...,validation=’LOO’) and RMSEP within library(pls) leads to

# Comp. 1 2 3 4 5 6 7 8 9 10
Prediction 160 223 332 270 272 236 310 326 249 311

RMSEP ×100 1.649 1.614 1.583 1.553 1.402 1.308 1.290 1.292 1.302 1.339

8


