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ESTIMATION OF REGIONAL TRENDS IN SULFUR DIOXIDE
OVER THE EASTERN UNITED STATES

Abstract. Emission reductions were mandated in the Clean Air Act Amendments of 1990 with the
expectation of concomitant reductions in ambient concentrations of atmospherically-transported
pollutants. To evaluate the effectiveness of the legislated emission reductions using monitoring data, this
paper proposes a two-stage approach for the estimation of regional trends and their standard errors. In the
first stage, a generalized additive model (GAM) is fitted to airborne sulfur dioxide (SO2) data at each of
35 sites in the eastern United States to estimate the form and magnitude of the site-specific trend (defined
as percent total change) from 1989 to 1995. This analysis is designed to adjust the SO2 data for the
influences of  meteorology and season. In the second stage, the estimated trends are treated as samples
with site-dependent measurement error from a Gaussian random field with a stationary covariance
function. Kriging methodology is adapted to construct spatially-smoothed estimates of the true trend for
three large regions in the eastern U.S. Finally, a Bayesian analysis with Markov Chain Monte Carlo
(MCMC) methods is used to obtain regional trend estimates and their standard errors, which take account
of the estimation of the unknown covariance parameters as well as the stochastic variation of the random
fields. Both spatial estimation techniques produced similar results in terms of regional trend and standard
error.  

Key word index: regional trend, generalized additive models, kriging, Markov Chain Monte Carlo



3

1. INTRODUCTION

The implementation of the Clean Air Act (CAA), from its passage in 1970 to the 1990

amendments, has always required an assessment of the effects of atmospherically-transported

pollutants on the environment. The 1990 amendments included new requirements that will

appreciably reduce sulfur dioxide (SO2) emissions. The total emission release expected in 2010 is

8.95 million tons per year, a reduction of 10 million tons per year from the amount projected to

be released without controls. These reductions are intended to reduce public health risks and to

protect sensitive ecosystems. Ground-level concentrations of SO2 depend on the proximity to

source(s), prevailing meteorology, and source-receptor relationships. The chemical and physical

interactions of atmospheric processes and SO2 emissions produce data patterns that show large

spatial and temporal variability (U.S. EPA 1998a), making it difficult to evaluate the extent to

which the emission control programs achieved the goal of reduced atmospheric concentrations. 

The estimation of trends in airborne concentrations has been the subject of many

investigations since the implementation of national monitoring networks in the late 1970’s.

Shreffler and Barnes (1996) used a linear model to estimate trends (percent change per year) in

daily atmospheric concentrations of SO2 adjusted for meteorological factors, ozone, and seasonal

cycles at six locations in the northeastern U.S. They estimated the median reduction from 1977 to

1989 to be 46%, which is not commensurate with an estimated 25% decline in SO2 emissions

over this period. This result may reflect changes in nearby sources of SO2. Lefohn and Shadwick

(1991) estimated trends in ozone, SO2 and nitrogen dioxide at rural sites in the U.S. using non-

parametric methods. Flaum et al. (1996) estimated trends in hourly ozone concentrations after
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removing the influences of temperature and other meteorological variables at eight sites in the

eastern U.S. They found that adjusting for meteorology was critically important for evaluating

the impact of emission controls on ambient ozone levels. Bloomfield et al. (1993) studied ozone

concentrations and meteorology in rural areas surrounding Chicago, Illinois. They used a

parametric non-linear model to describe the non-linear and non-additive dependence of network-

typical ozone values on meteorological variables. All of these studies focused on developing

models either for site-specific trends or models for trend in a summary statistic that represents a

network typical value. They consider neither trend estimation at un-monitored sites nor

estimation of regional trends, which requires a model for the spatial variability of site-specific

trends. 

In recent years, the focus of environmental policy has shifted toward regional-scale

strategies which require regional estimates of trend for both their development and subsequent

evaluation. In an effort to provide meaningful regional trend information, this paper describes a 

two-stage modeling approach to estimate regional trends in airborne concentrations of  SO2 that

have been adjusted for concomitant changes in meteorology and season. Concentrations of SO2

are strongly affected by prevailing meteorological conditions, but the precise form of this

dependence is not clear, so we used a generalized additive model (GAM) to describe the

dependence of  SO2 on meteorological conditions, seasonality, and time at each monitoring site.

The first stage of this analysis focuses on using the time component of the GAM to estimate site-

specific trend where trend is defined as a percent total change that is a measure of the total

change in SO2 concentrations that have been adjusted for the effects of meteorology and seasonal

cycles. 
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The second stage of analysis uses an extension of kriging methodology to predict

smoothed surfaces of trend based on the site-specific estimates from the first stage. For this,

trends are assumed to vary over a geographic region of interest as a realization of a Gaussian

random field, and maximum likelihood estimation is used to fit the model. Then, averages of

trend (defined as regional trend) over geographic regions of interest can be estimated. The

analysis uses a form of hierarchical model, and differs from traditional kriging methodology by

making explicit allowance for the sampling variability in the estimates from the first stage. This

analysis is applied to airborne SO2 concentration (ug/m3) data measured at 35 rural long-term

monitoring sites in the eastern U.S. that are part of the Clean Air Act Status and Trends

Monitoring Network (CASTNet) (U.S. EPA 1998a). Since kriging variances do not account for

the estimation of unknown parameters in the covariance function, Bayesian techniques are also

used to estimate prediction variances. These two approaches are compared to quantify the effect

of ignoring the uncertainty of the covariance parameters on inference about regional trends.

Finally, estimates of regional trend in SO2 are compared to corresponding changes in SO2

emissions for three large regions in the eastern U.S. to evaluate the impact of reduced emissions

on measured SO2 concentrations. 

This paper is organized as follows. In Section 2, we summarize the monitoring data,

Section 3 describes the estimation of sites-specific trends and prediction of a trend surface using

kriging, and Section 4 presents the kriging and Bayesian approaches for estimating regional

trends and their standard errors. Finally, results of the analysis are given in Section 5 and Section

6 provides the conclusions. 
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2. DATA

CASTNet began measuring air and deposition variables in 1987 at a variety of sites

within the conterminous U.S., and, by 1989 most of the sites were operational. Monitoring

locations were selected according to strict siting criteria designed to avoid undue influence from

point and area emission sources, and local activities (e.g. agriculture). Continuous measurements

of meteorological variables including temperature (°C), wind speed (m s-1), and wind direction

(degrees clockwise from north) were summarized hourly at each site, and weekly measurements

of SO2 concentrations were obtained from filter pack measurements. It was necessary to

summarize hourly meteorological data on the same scale as the SO2 measurements, viz, weekly.

These meteorological summaries were calculated by averaging all hourly meteorological

variables between 10 am and 5 pm across the week to characterize conditions during periods of

atmospheric mixing, and reflect regional, large-scale flows of air pollution across areas covered

by CASTNet. To be included in this analysis, a site’s data record (January 1, 1989 to September

30, 1995) must include at least 80% of all days with concurrent SO2 and meteorological data.

Adherence to this data-completeness criterion produced 35 long-term monitoring sites (Holland

et al. 1999) suitable for trend analysis in the eastern U.S. The accuracy and precision of

CASTNet monitoring data are detailed by Clarke et al. (1997). Time-series plots of the data

observed at three sites are shown in Figure 1. The two sites located in close proximity to major

SO2 emissions point sources (Alhambra, IL and Lykens, OH) , show strong evidence of seasonal

cycles in the data. Typically SO2 is higher in the winter compared to the summer, when SO2 is 

converted to other atmospheric pollutants. The remote, background site in Ashland, ME shows
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Figure 1. Time-series plot of SO2 concentrations (ug/m3) at three CASTNet sites. 

much lower SO2 concentrations compared to the other two sites, but seasonal cycles are still
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1S-PLUS is the commercial version of the S language and is distributed by Statistical Sciences,
Inc., a division of Mathsoft.

evident. 

3. TWO-STAGE MODEL FOR REGIONAL TREND

3.1 First Stage 

The first-stage of analysis uses GAM to model the relationship between the logarithm of

SO2 concentrations and prevailing meteorological conditions, seasonal effects, and time. The

GAM approach offers an adaptive method for regression modeling using non-parametric

scatterplot smoothers. Rather than requiring a priori specification of the model form, this

approach lets the data suggest the form of the model, which results in a highly flexible technique

for describing non-linear relationships. Several smooth terms can be fit simultaneously through

iterative use of scatterplot smoothers, assuming that the underlying functions are reasonably

smooth. Both smoothing spline functions and local regression models (usually referred to as a

loess fit) can be used to model these relationships in the S-PLUS1 programming environment.

Hastie and Tibshirani (1990) present a detailed account of the theory and application of GAM.

Davis and Speckman (1999) used GAM to forecast maximum ozone levels as a function of

meteorology in the Houston area and Holland et al. (1999) used GAM to estimate trend in SO2

concentrations that were adjusted for the effects of meteorology and seasonality. The model

presented by Holland et al. (1999) is summarized below and is used to obtain the first-stage
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estimates of trend and variance at each of the 35 CASTNet monitoring sites.

The relationship between logarithmically-transformed weekly concentrations of SO2 and

meteorology, seasonal cycles, and time (trend) was examined at each site sl, l=1,...,35, using a

GAM of the form,

lo g ( ) ( ) ( ) ( )

( , ) ,
( ) ( ) ( ) ( )

( )

S O g w eek g yea r g tem p era tu re

g u v
ijl l l i l ij l ijl

l ijl ijl ijl

2 1 2 3

4

= + + +
+ +

µ
ε (1)

where SO2(ijl) refers to the measured SO2 concentration in the ith week of the jth year at the lth site,

 gk(l)(�), k=1,...,4, are smooth functions of the corresponding covariates, and areε σijl lN~ ( , )0 2

independent random variables. Linearity (gk(l)(x)=�k(l)x) remains a special case. The variable �year�

is time measured in decimal years (Julian date of the mid-point of the sampling period divided by

365) starting in 1989, temperature is average weekly temperature (°C), u is the average east-west

component of wind (calculated as -{wind speed} x sine(wind direction)), and v is the average

north-south component of wind (calculated as -{wind speed} x cosine(wind direction)). For each

site, the model was fit by solving a system of equations using the Gauss-Seidel iterative method,

also known as backfitting (Hastie and Tibshirani 1990), obtaining estimates of and . The�µl � ( )g k l

natural logarithm of SO2, instead of untransformed SO2, was modeled as an additive function of

the explanatory variables because this transformation produced residuals that were in closer

agreement with the distributional properties of the errors in model (1). The inclusion or exclusion

of each variable in the model and the type of smoothing method used were determined via a step-

wise search implemented in S-PLUS. In this procedure, an ordered regimen of candidate models

is evaluated in terms of the Akaike Information Criterion (AIC) (see Akaike 1973). When this

criterion cannot be decreased by choice of an alternative model, the selection process terminates.
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Z s e el
n l m l n l m l( ) [ ].( ) /= −− −1 0 0 1

2 2 2µ µ σ σ (2)

To provide an evaluation of trend consistent with EPA reporting of trend in observed SO2

concentrations, the following approach was used. EPA (U.S. EPA 1998b) reports percent total

change or trend based on ratios of annual averages of SO2 concentrations. For two annual periods

(m,n), trend is defined as 100(meann/meanm -1) for m<n. Given our goal of estimating trend in

SO2 concentrations adjusted for seasonal and meteorological effects (exp(ĝ2(l)(yearij))), we use the

following estimate for trend based on the EPA approach: 100{E[ exp(ĝ2(l)(yearin))] /    

E[exp(ĝ2(l)(yearim))] - 1}. For each site location sl, we assume ĝ2(l)(yearij), the estimated effect due

to time, has a normal distribution with parameters µjl and . Then, E[exp(ĝ2(l)(yearij))] = σ jl
2

exp , and hence site-specific trend (Z(sl)) may be defined as  ( / )µ σj l j l+ 2 2

Although the resulting trend cannot be directly related to SO2 emissions per se, it seems likely

that emission changes would be the dominant effect reflected in the trend.

We also are interested in assessing the statistical significance of trend in SO2

concentrations. It is difficult to compute the variance of this change directly because the S-PLUS

implementation of fitting a non-parametric smoothing function for year is limited to returning an

approximation to the diagonal term of the variance-covariance matrix of the smoothed

predictions (Chambers and Hastie 1992). Further, it is not clear how to extend this approximation

to estimate the rest of the variance-covariance matrix. Given this condition, we implement a

jackknife procedure to provide estimates of trend and variances. In the jackknife approach, n

(where n=81 is the number of months in the data record) model-based estimates of Z(sl) were

obtained by deleting one month of SO2 concentrations at a time, fitting model (1), and replacing
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the population quantities with the sample estimates of the parameters in (2). Using these n

estimates, quantities known as pseudo-values were used to obtain the jackknife estimates of both

trend and variance  at each site (see Efron and Tibshirani 1993). We use these(
~

( ))Z s l ( ~ )σ l
2

estimates as reasonable measures of site-specific trend and variance, but note that other measures

of trend associated with other types of statistical models could also be used as input to the second

stage of regional trend analysis to be described later.

3.2  Second Stage

To make inference about the trend at un-monitored sites as well as regional trends, we

apply an extension of kriging analysis that allows for the errors of estimation in the first stage of

the analysis. We assume that the smooth, unobserved surface of trend varies over the eastern U.S.

as a realization of a Gaussian random field {Z(s), s � �2}, with 

where � is a q-vector of unknown regression parameters,  f1(s),...,fq(s) are known functions,

�=Var{Z(s)},  K
� (�,�) is a correlation function in �2 parameterized by � � �, and �s-u� denotes

the Euclidean distance between sites s and u. For each of the principal correlation functions

(exponential, spherical and Gaussian) considered in this work, �  is the range parameter. 

For each monitoring site sl, we assume that the true trend Z(sl) is unobserved and

unknown, but that it is estimated by , along with its standard error, from the GAM in the
~

( )Z s l

E Z s f s C o v Z s Z u K s uj j
j

q

{ ( )} ( ); { ( ) , ( )} ( | | | | ) ,= = −
=

∑ β α θ
1

(3)
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2
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1 2 1ex p ' (5)

~
Z (s )   Z (s )   e ,l l l= +    (4)

first stage of the analysis. The two variables are related by the equation

where  are interpreted as measurement errors, independent of the random field Z(�),e Nl l~ ( , ~ )0 2σ

l=1,...,35. Note that each monitoring site has its own ��nugget effect��, , that are assumed~σ l
2

known and equal to the jackknifed variance estimates of trend obtained in the first stage by fitting

model (1). For now, we assume e1,...,e35 to be independent random variables. This is justified, as

an approximation, by the asymptotic normality of the GAM estimates. 

Equations (3) and (4) together form a hierarchical model for the ��trend data��,

, but because both parts of the hierarchy are assumed normally distributed,
~

(
~

( ) , .. . ,
~

( ))Z  = Z s Z s1 3 5 '

we can proceed directly to the likelihood of the model parameters, which is given by  

where X is a known 35 x q matrix of known regressors, Xij=fj(si), and �=�V(�)+S, 

V(�)ij=K� (�si-sj�) and . An alternative modeling strategy which allows forS =d ia g ( ~ , ... , ~ )σ σ1
2

3 5
2

spatial correlation among the measurement errors could be used. Under this model, the diagonal

S would be replaced with a general covariance matrix S=Var(e). The model parameters �, �, and

�  are estimated by maximum likelihood;  see Cressie (1993) and  Mardia and Marshall (1984)

for details about fitting and asymptotic properties of ML estimators.

We estimate the trend Z(so) at any location so using the best linear unbiased predictor
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σ τ τ τ τα2 1 1 1 1 1( ) ( ) ( ) ( ) .s x X X X x Xo o o o o o= − + − −− − − − −
o
' ' ' ' 'Σ Σ Σ Σ (7)

(BLUP), given by

where xo� = (f1(so),...,fq(so)), , and� ) '
~β = − − (X ' -1Σ ΣX X Z1 1 τ o oC o v Z s Z s' ( { ( ) ,

~
( )} , . . . ,= 1

 The mean-squared prediction error (MSPE) of is given by C o v Z s Z so{ ( ),
~

( )} ) .3 5
� ( )Z s o

The right-hand sides of equations (6) and (7) depend on the covariance parameters which are

unknown. So in practice, we use the estimated (or empirical) BLUP and MSPE obtained by

replacing � and �  with their estimates. This tends to underestimate the prediction uncertainty. To

remedy this, we later consider a Bayesian analysis to evaluate the effect of ignoring the

uncertainty of the covariance parameters on inference about regional trends.

4. REGIONAL TREND ESTIMATION 

Let R be a geographical subregion over which trend estimation is desired. A natural

measure of trend over R is given by 

which we define as the regional trend of R; |R| is the size of the region. This integral can be

approximated by 
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where {so1,...,soN} � R form a grid of points discretizing the region R. 

4.1 Kriging Procedures

The optimal predictor of ZR is given by

with variance

where are the ML estimates, is given by (6), and�
�,α θ �( )Z so i

where xoi and �oi are defined analogously as xo and �o. In equation (12), ML estimates of � and �

are used to obtain  � , � , � .τ τo i o j a n d  -1Σ
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4.2 Bayesian Procedures

Because the covariance parameters are treated as known when in fact they are estimated,

the empirical MSPE is expected to underestimate the true prediction variance. This defect is not

easily remedied within the maximum likelihood estimation framework, but is easier to handle if

we adopt a Bayesian perspective to compute the posterior distribution of the covariance

parameters. To introduce this, we use the model defined in (5) with prior density (Handcock and

Stein 1993)

Then we have that and after integrating thisπ β α θ β α θ π β α θ( , , |
~

) ( , , ;
~

) ( , , )Z L Z∝

posterior with respect to �  we obtain

An obvious way to implement this is to take �(�) to be an improper prior, but there is a problem

with this because such a choice leads to an improper posterior. For a standard geostatistical

model without measurement error (S=0), this has been shown by Berger, De Oliveira, and Sanso

(paper forthcoming), while in the case we are considering with measurement error, the likelihood

tends to a positive constant as �  tends to infinity, so if the prior distribution is improper, the

posterior distribution will be as well. Therefore, we must employ a proper prior for �. The

inverse gamma (IG) family encompasses a wide variety of distributional shapes and we therefore

adopt a prior distribution  with mean b/(a-1) for a >1.π θ( )  =  IG (a , b )
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This posterior distribution is not amenable to analytical treatment, so we use Markov

chain Monte Carlo (MCMC) methods to draw a sample from the posterior distribution (14). This

sample will be used to make inference about � and � as well as regional trends;  see Gilks,

Richardson, and Spiegelhalter (1996) for details on MCMC methods. For this, note that none of

the full conditional distributions of (14) are of standard form, so we use a Metropolis-Hastings

algorithm where we update the parameters � and � one at a time. For proposal distributions, we

use uniform distributions centered at the current values with scales chosen so that the empirical

acceptance rate is approximately 0.5.

With the sample {(�i, �i); i=1,...,m} from the posterior distribution (14), we can estimate

regional trends and their standard errors in a way that does not require the covariance parameters

to be known and accounts for their uncertainty. For this we use the optimal Bayesian predictor of

ZR , which from the decomposition of the expectation can be written as   

where is given by equation (6), and E Z s Zo r( ( ) |
~

, , )α θ

 The above expression is computed using the decomposition of the covariance
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Since the and are explicit functions of � and � givenE Z s Zo r( ( ) |
~

, , )α θ C o v Z s Z s Zo r o t{ ( ), ( ) |
~

, , }α θ

respectively by (10) and (12), the covariance in (17) can be approximated using the MCMC

sample of these parameters. 

It should be pointed out that the Bayesian analysis given here is not a “fully” Bayesian

approach. The latter would apply Bayesian analysis to both stages of the analysis, including the

initial GAM stage. The MCMC approach given here treats the results of the GAM analysis as

given, and applies Bayesian methodology only to the spatial part. The main motivation behind

pursuing a Bayesian analysis was to account for the uncertainty of the spatial model parameters

in calculating standard errors for the kriging analysis, and this is achieved by the analysis which

has been given. A fully Bayesian analysis would allow us to examine the adequacy of these

calculations in more detail, but this would be considerably more computationally intensive than

what has been given here, and has not so far been attempted. 

4.3 Clustering of Sites

Based on a k-means clustering procedure (Hartigan and Wong 1979), the CASTNet sites

were aggregated into three broad clusters of sites. Boundaries around each of these clusters were

used to define the geographic areas over which inference about regional trends was done. Sites

within a cluster show similar data patterns among themselves, while sites from different clusters
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show comparatively distinct data patterns. In the k-means analysis the objective is to form the

clusters in a way that the total within-cluster sum of squares is minimized. After an initial

estimate for the cluster centroids, sites are moved from one cluster to another based on the cluster

centroid, and then cluster centroids are recalculated. This process continues until no additional

switching of sites among clusters reduces the total of within-cluster sum of squares.

5. RESULTS 

5.1 Site-Specific Trends

Jackknifed site-specific estimates of trend were all negative (i.e., SO2 levels are

decreasing) and could be statistically differentiated (.05 significance level) from a zero percent

change at all sites (see Figure 2). The exponential variance factor in equation (2) was found to

have minimal effect on  and (less than 1% for all sites) when compared to estimates
~

( )Z s l
~σl

2

without this factor. The functions g1(week) and g2(year) were included in the model at all sites

based on the model selection procedure, and smoothing functions were fit to both of these

variables at all sites. For 33 sites, g3(temperature) was included in the model and smoothing

functions were fit at 32 of these sites. At 32 sites, SO2 concentrations were dependent on a

smoothed bivariate surface of (u,v) wind components. Site-specific model R2 values ranged

between 0.45 to 0.79. For 27 of the 35 sites, R2 values exceeded 0.6, providing good de facto

evidence that the site models are accounting for the seasonal and meteorological influences

affecting SO2 concentrations. Quantile-quantile plots of the residuals showed a non-linear
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Figure 2. Trend (total percent change) in SO2 concentrations (ug/m3) at CASTNet sites from 1989 to 1995 with 
standard error (%) in parentheses. 
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relationship between Gaussian quantiles of -2 to 2, indicating a normal distribution for 95% of

the population. Autocorrelation in the site-specific model residuals was examined to determine if

the model error structure is mispecified. For 4 of 35 sites, significant temporal correlation among

the residuals was present based on 95% confidence limits for an independent series with �=0. All

of these significant correlations were relatively low, approximately 0.2. Overall, these results

support the assumption of uncorrelated residuals in model (1) as a reasonable approximation. 

5.2 Model Determination for Z(s)

Based on an exploratory data analysis of the relationship between monitoring site location

(latitude and longitude) and magnitude of trend, we evaluated two forms for E{Z(s)}: one

constant and the other: �1+�2x+�3y; s=(x,y). For each of these mean functions, we considered

three commonly used correlation functions: exponential, Gaussian, and spherical (Cressie 1993).

The Gaussian correlation function 

in which � > 0 is a parameter controlling the spatial range of the correlation function and ��� is

the Euclidean distance between two monitoring sites, produced the highest likelihood function

evaluated at the parameter estimates among the three candidate correlation models, regardless 

of which of the mean functions is used. Although the likelihood function using the Gaussian 

correlation was greater in comparison to the other correlation functions, the differences among
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the likelihood values for the three correlation functions were relatively small (less than 1.5).

Further support for this correlation function was found after evaluation of the Mate� rn class of

correlation functions. The Mate� rn class is characterized by two parameters: a scale parameter

controlling the range of correlation and a smoothness parameter for controlling the smoothness of

the random field. As the smoothness parameter goes to infinity, the Gaussian correlation is a

limiting case of the Mate� rn class (Handcock and Stein 1993). In this analysis, the ML estimate of

the smoothness parameter iteratively moved towards infinity corresponding to a model that is in

practice equivalent to the Gaussian correlation. When including an additional nugget effect in

K(�) separate from the measurement error effect defined in equation (9), its estimated value was

zero while the estimates of the other parameters were equivalent to those obtained through

estimation with no nugget. Using the likelihood ratio test, the hypothesis that the process has a

constant mean function is not rejected at the 0.05 significance level (p-value is about 0.09), so we

selected the constant mean function over the alternative.

A further elaboration of this model was considered assuming spatial correlation among

the e1,...,e35. The jackknifed series of trend estimates at each site was used to estimate the sample

correlation matrix of e1,...,e35. Most of these correlations were less than 0.4, but some were as

high as 0.7. For the model with constant mean and Gaussian correlation, replacing the diagonal

matrix S with a general or non-diagonal covariance matrix S=Var(e) provided the best fit in terms

of the AIC and BIC criteria (see Table 1). This model was also tested for geometric anisotropy

where the process is not isotropic in the original space, but in a linearly-transformed space (2-

dimensional transformation) that corresponds to a combination of stretching and compressing the

coordinates. As shown in Table 1, this model offers no improvement in fit when compared to the
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fitting criteria values for the other models. Thus, our final selected model has a constant mean,

Gaussian correlation with no nugget, and a non-diagonal S matrix. One potential disadvantage in

estimating all elements of the non-diagonal S matrix is the possibility of increased estimation

error in the other parameters of the model. This does not appear to occur here since a direct

comparison of the two S matrices indicates that the non-diagonal matrix provides a better fit.    

Table 1. Comparison of covariance fits for two forms of E{Z(s)} and S=Var(e) using a Gaussian
correlation model. 

Covariance
Model -(log-likelihood)

  number of 
 parameters (p) AIC1 BIC2

constant mean  / diagonal Var(e)
linear mean      / diagonal Var(e) 
constant mean  / general  Var(e)
linear mean      / general  Var(e)
constant mean  / general  Var(e)3

linear mean      /  general Var(e)3

87.0
84.6
83.2
82.0
82.0
80.8

3
5
3
5
5
7

180.0
179.3
172.5
174.0
174.0
175.6

184.7
187.1
177.1
181.8
181.7
186.5

 
1  Akaike Information Criterion: -2(log-likelihood)+2p
2  Bayesian Information Criterion: -2(log-likelihood)+plog(n)
3  Geometric Anisotropic Covariance

A rather vague prior specification for �(�) is obtained by setting a = 2 (so having an

infinite a priori variance) and b=1.73 in the inverted gamma distribution (see Figure 3). The

Markov Chain is generated by sampling from equation (14) using a Metropolis-Hastings step.

Figure 4 shows the estimated marginal posterior distributions of � and �, obtained from the

MCMC sample. A limited sensitivity analysis of the posterior distributions of � and � indicated

that the posterior of � was not very sensitive to the choice of a and b. However, the posterior
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Figure 3. Plot of prior distribution for �, %(�), for inverted gamma distribution parameters a=2 and b=1.73. 

distribution of � showed more probability mass for small values of theta when both a and b were 

close to zero. An examination of other estimated posterior distributions for values of a>1and b>1

indicated that using a=2 and b=1.73 provided a reasonable choice for the prior distribution.

These hyperparameter values produce a comparatively flat prior distribution that imparts some

sense of being “noninformative”.

 The predicted surfaces for trend and standard error (based on estimators in (6) and (7))

are shown in Figures 5 and 6. Overall, trend predictions vary from -35% to -45% over much of

the eastern U.S. Increasing and decreasing gradients of this predicted surface appear to be

consistent with the sites showing the highest and lowest trends in SO2 concentrations. The
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Figure 4. Estimated marginal posterior distribution of � (%2) and � (degrees). 
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Figure 5. Smoothed surface of trend (percent total change) in SO2 concentrations (ug/m3) based on covariance 
model with a constant mean, Gaussian correlation, and general S=Var(e)

 predicted surface in the Ohio River Valley shows a nearly uniform surface varying from -33% to

-37%.

5.3 Regional Trend Estimation 

The delineation of the boundaries of the regions was based on identifying geographic
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 areas of coherent seasonally-adjusted SO2 data (based on k-means analysis of section 4.3) and

matching these regions to regions administered by the U.S. EPA. Regional EPA administrators 

Figure 6. Surface of standard error of trend (%) based on a covariance model with a constant mean, Gaussian 
correlation, and general S=Var(e).

are responsible for developing and implementing programs for integrated environmental

protection activities and conducting effective enforcement and compliance programs. Thus,
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regional trend estimates that adhere as closely as possible to these regions would have the most

impact on contributing to the efficiency of environmental management within each EPA region.

Given the generally uniform distribution of sites across states in the Midwest region, this region

was defined to include Illinois, Indiana, Ohio, Michigan, and Wisconsin. This region is nearly

identical to EPA Region V, the difference being the exclusion of Minnesota.  The Southern

region was defined to include Virginia, North Carolina, South Carolina, Tennessee, Georgia,

Alabama, Mississippi, Arkansas, and the northern area of Florida. This region covers almost all

of the states in EPA Region IV. However, Kentucky is not included and Region IV does not

include Virginia. The Mid-Atlantic region covers all of West Virginia, Maryland, Delaware, New

Jersey, Pennsylvania, and southern New York. These areas are part of EPA Regions II and III. 

Although the AIC and BIC calculations clearly favor a covariance model with non-

diagonal S, a sensitivity of this modeling assumption was performed using a Gaussian correlation

and constant mean. For two types of covariance, one with diagonal S and the other with non-

diagonal S, kriging predictions and standard errors were calculated at the grid nodes of a lattice

superimposed over each of the three regions (see Figure 7) using the estimators given in 

equations (6) and (7). Regional estimates of trend and its variance were obtained from the

estimators in equations (10) and (11). Similarly, the Bayesian approach was used to obtain the

regional estimates for comparison to the kriging results. In the MCMC analysis, 1000 samples

were drawn from the posterior distribution given in equation (14).

For each covariance model described above, there is little difference between the kriging

and Bayesian estimates for regional trends (see Table 2). The similar trend estimates may be

explained by recognizing that kriging predictions are generally robust against specification of the
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Figure 7. Lattices superimposed over three regions. Region (a) is the Midwest, (b) is the Mid-Atlantic, and (c) is the
South. 

covariance parameters and we are averaging over large geographic regions. Although we

expected the Bayesian analysis to result in a significant increase in standard errors, we found that

this did not occur. The Bayesian estimates of standard errors were just slightly larger than the

kriging standard errors, or even slightly smaller in some cases. The latter result is undoubtedly an

artifact, apparently caused by the fact that estimates of � tended to be slightly smaller in the

Bayesian analyses than the ML estimation analyses, but the importance of this conclusion is that

the standard errors are not changed very much by switching to Bayesian analysis. In the Mid-
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West, results (using non-diagonal S) were obtained for two additional lattices, one with

approximately twice as many grid nodes and one with approximately one-half the nodes of the

lattice used in Table 2. Varying the spatial resolution of the lattice had little effect on the

estimates of regional trend and standard error.

Table 2. Comparison of regional trend estimates (%) and their standard errors (%) using the
kriging and Bayesian Methods. 

Region Kriging1 Bayesian1 Kriging2 Bayesian2

Mid-West -36.563

(1.37)
-36.28
(1.31)

-38.851

(2.28)
-38.45
(2.31)

Mid-Atlantic -35.41
(1.35)

-35.58
(1.26)

-39.95
(2.27)

-39.39
(2.40)

South -35.71
(1.65)

-35.78
(1.43)

-39.31
(2.45)

-38.85
(2.49)

1 Covariance model with Gaussian correlation, constant mean, diagonal S.
2 Covariance model with Gaussian correlation, constant mean, non-diagonal S.
3 The top number in each cell is the estimate of regional trend, the standard error is given in          
   parenthesis.

Ignoring the off-diagonal elements of the S matrix does not result in a significant change in the

estimates of regional trend, but trend estimates for this model have smaller standard error. A

kriging analysis using restricted maximum likelihood (REML) estimates instead of ML estimates

provided almost equivalent estimates of trend, with slightly larger standard errors. 

Another example of how trend results can differ over a wider selection of models

(including the previous models) is shown in Figure 8. This figure shows 95% prediction intervals

for four predictands (average of all 35 stations, plus the three regional grids) and for eight models
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(every possible combination of exponential/Gaussian correlation, constant/linear trend, and

diagonal/non-diagonal S matrix). Also shown on each plot is the sample mean of the first stage

GAM trend estimates within each region. In general, there is more smoothing in the models with

non-diagonal S, but this is compensated for by wider prediction intervals. The models with

diagonal S give a closer fit to the sample averages of GAM trend, but this should not be

interpreted to mean that this model should be chosen over models with non-diagonal S. Based on

the AIC and BIC calculations, the covariance with Gaussian correlation, constant mean, and non-

diagonal S is still our recommended model. The comparisons in Figure 8 are intended to give

some indication of the sensitivity of our final conclusions to these assumptions.

In our analysis, we have used degrees of latitude and longitude as a measure of distance,

rather than a measure of real distance. To investigate whether this makes any difference for our

recommended model, we also performed an analysis using nautical miles (nm). It was assumed as

an approximation that 1° latitude = 60 nm and  1° longitude = 45 nm. We note several results 

from this analysis: (1) although the likelihood values are better in the nm model than in the 

degrees model, the difference is too small to indicate a significant improvement; (2) the

comparisons among different models for spatial trend and covariance function are exactly the

same in both models; and (3) the changes in estimated regional averages are very close to those

given in Table 2. 

For our analysis, annual SO2 emission estimates from both area and point sources were

used for comparison to regional trends in SO2 concentrations. Area source estimates are available

at the county level for each year from 1989-1995. This approach produces a small inconsistency

between the final complete year of emissions data (1995) and the final year of SO2 data that 
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Figure 8. Comparison of regional average predictions for eight covariance models: A, covariance based on 
exponential correlation function, constant mean, diagonal S; B, covariance based on Gaussian correlation
function, constant mean, diagonal S; C, covariance based on exponential correlation function, linear mean,
diagonal S; D, covariance based on Gaussian correlation function, linear mean, diagonal S. E-H as in A-D,
but include non-diagonal S. Predictions are calculated for (a) overall mean of 35 stations, (b) Midwest grid
(c) Mid-Atlantic grid, (c) South grid. In each case, the mean prediction and 95% prediction error bounds
(non-Bayesian calculation) are shown for each of the eight models. The horizontal line on each plot
represents the sample mean of all 35 stations (plot(a)) or of the monitoring sites within each region
(plots(b)-(d)). 

ended on September 30, 1995. Total SO2 emission changes in the Mid-West, Mid-Atlantic, and
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South were calculated to be -28%, -18 and -10, respectively (U.S. EPA 1998b). For all regions,

the trends in SO2 concentrations are much larger than the corresponding change in emissions.

This disparity may be explained by the following discussion. The largest contributor of SO2

emissions is fuel combustion, accounting for 85% of the total in 1997 (U.S. EPA 1998c). The

electric utility industry accounts for most of the fuel combustion emissions, in particular the coal-

burning power plants have been the largest contributor to SO2 emissions.  The national

reductions from 1994-95 in SO2 emissions and ambient concentrations of SO2 are due mainly to

Phase I implementation of the CAA. Phase I compliance has significantly reduced emissions

from the participating utilities which are the largest emittors of SO2. Since by design CASTNet

sites are “rural” sites, they are most likely to monitor  regional air quality masses, and for SO2

this means mostly electric utility emissions. For the period, 1994-95, Phase I emissions decreased

by approximately 29%. Including the much smaller decrease that occurred prior to 1994, the

overall (1989-1995) decrease in Phase I emissions is similar to the estimates of regional trends

reported here.  

  

6. CONCLUSIONS

The increasing focus of environmental policy decisions on regional-scale solutions has

led to a corresponding increase in the importance of estimating pollution trends over regional-

scale landscapes. Where in the past, environmental policy-makers may have been content with

site-specific estimates of trends from a monitoring network, they now expect the characterization
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of pollution trends over broad geographic areas so that the effectiveness of emission control

strategies can be evaluated with respect to pollution-sensitive receptors, whether human or

ecological. This paper presents methodology to obtain spatially smooth estimates of regional

trend and its standard error, and applies a Bayesian analysis with MCMC methods to account for

the extra variability induced when parameters of the spatial covariance function are estimated.

Although there is evidence that trend varies by location over the eastern US, these approaches

produced similar results in terms of broad regional trend and standard error. For these data, the

additional uncertainty from the estimation of the covariance parameters did not significantly

increase the regional standard error. However, for other applications this source of variability

may be more important. For future research, we anticipate extending the hierarchical models

analysis to allow for the non-Gaussian distribution of errors in the first stage, and a fully

Bayesian implementation, including the estimation of a posterior distribution of trend parameters

at each of the sites. 
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Petrov, B. N., and Csàki, F. (eds), Second International Symposium on Information Theory,
Akademia Kiado� , Budapest, 267-281.

Bloomfield, P., Royle, A. J., and Yang, Q. (1993). ‘Rural Ozone and Meteorology: Analysis and
Comparison with Urban Ozone’. National Institute of Statistical Sciences, Technical Report
 No. 5.

Chambers, J. M. and Hastie, T. J. (Eds.) (1992). Statistical Models in S, Wadsworth & Brooks/Cole
Computer Science Series.

Clarke, J. F., Edgerton, E. S., and Martin, B. E. (1997). ‘Dry deposition calculations for the Clean Air
Status and Trends Network’. Atmos. Envir., 31, 3667-3678.

Cressie, N. (1993). Statistics for Spatial Data, Revised edition, John Wiley.

Davis, J. M. and Speckman, P. (199). ‘A model for predicting maximum and 8-hr average ozone in
Houston’. Atmos. Envir. 33, 2487-2500.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Chapman and Hall.

Flaum, J. B., Rao, S. T., and Zurbenko, I. G. (1996). ‘Moderating the influence of meteorologic
conditions on ambient ozone concentrations’. J. Air & Waste Manage. Assn., 46, 3546.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice,
Chapman & Hall

 
Handcock, M. S. and Stein, M. L. (1993). ‘A Bayesian analysis of kriging’. Technometrics 35, 403-410. 

Hartigan, J. A. and Wong, M. A. (1979). ‘A k-means clustering algorithm’. Appl. Stat. 28, 100-108.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, Chapman and Hall.

Holland, D. M., Principe, P. P., and Sickles, J. E., II, (1999). ‘Trends in atmospheric concentrations of
sulfur and nitrogen species in the Eastern United States for 1989-1995�. Atmos. Envir. 33, 37-49. 

Lefohn, A. S., and Shadwick, D. S. (1991). ‘Ozone, sulfur dioxide, and nitrogen dioxide trends at rural
sites located in the United States’. Atmos. Envir., 25A, 491-501.

Mardia, K. V. and Marshall, R. J. (1984). ‘Maximum likelihood estimation of models for residual
covariance in spatial regression’. Biometrika 71, 135-146.

Shreffler, J. H. and Barnes, M. H., Jr. (1996). ‘Estimation of trends in atmospheric concentrations of
sulfate in the northeastern United States’. J. Air & Waste Manage. Assn. 46. 621-630.



U. S. Environmental Protection Agency (1998a). Clean Air Status and Trends Network (CASTNet)
Deposition Summary Report (1989-1995). EPA/600/R-98/027. Office of Research and
Development, Research Triangle Park, NC. 

U. S. Environmental Protection Agency (1998b). National Air Pollutant Emissions Trends Update: 1970-
1997. EPA/454/E-98-007. Office of Air Quality Planning and Standards, Research Triangle Park,
NC. 

U. S. Environmental Protection Agency (1998c). National Air Quality and Emissions Trend Report,
1997. EPA/454/R-98-016. Office of Air Quality Planning and Standards, Research Triangle Park,
NC. 


