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Summary

Regional estimation methods are used in such fields as hydrology and

meteorology, for estimating parameters such as return values (or quantiles)

of a distribution, when data are available at many sites in a region. It is

assumed that the desired parameters are either common to all the sites, or

else dependent on a set of covariates through a model which is common to

all the sites. However, even if we have the correct model for the marginal

distribution of the data at each site, conventional methods of estimation will

not take into account the dependence between the sites. In the past, this

problem has been recognised but no clear-cut solution has emerged. In the

present paper, the method of maximum likelihood is used to estimate the

parameters, the likelihood function being constructed as if the sites were

independent, but a new method is proposed for obtaining standard errors

which allows for spatial dependence. The method is extended to obtain

critical values of likelihood ratio tests. An example is given for a network of

rainfall data in South-East England. The validity of the results is confirmed

by a small simulation study.
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1. Introduction

Consider the following problem. The data consist of a large number

of time series, though each series may contain only a relatively small num-

ber of observations. We are interested in some parameter of the marginal

distributions of the series. This parameter could be estimated from any one

of the series but, because the individual series are short, is unlikely to be

estimated accurately in this way. Therefore, it is proposed to estimate the

parameter by combining the data in different series, under a model which

assumes that the parameter is either common to all the series, or is related

to covariates through a common regression relationship. However, the series

are dependent. How should we take account of this dependence in estimating

the parameter?

This encapsulates the problem of regional estimation in hydrology.

The parameter of interest is often taken to be the N -year return level of a

variable at a given site, i.e. the (1 − 1/N)-quantile of the distribution of

annual maximum, and the method of estimation may be based on fitting

one of the extreme value distributions (Leadbetter, Lindgren and Rootzén,

1983; Galambos, 1987) to the annual maxima at each site. However, it is

common for less than 25 years’ data to be available at each site, while the

N -year return value is required for N of the order of 50 or 100. To get

around this difficulty, regional methods have been developed which combine

all the data from a region. The regions may be defined in a number of ways

– they may be geographical regions or they may be groupings of stations

based on common catchment characteristics – but the idea is to define the

regions so that sites within each region are approximately homogeneous.

The Flood Studies Report (NERC 1975) is a standard reference for this

technique, though there are numerous more recent ones including Moore

(1987), Arnell and Gabriele (1988), Dales and Reed (1989) and Cunnane

(1989) to name but a few.

Buishand (1990) has proposed a model based on combining the data
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at all sites into a single likelihood function and estimating the parameters by

maximum likelihood. This method, like most others in current use, ignores

inter-site dependence. Stedinger (1983) examined the effect of inter-site de-

pendence, and concluded that the main effect was to increase the variance of

estimates of margin parameters, compared with the independent case. Buis-

hand (1984) was the first to propose a model for spatial dependence, loosely

based on bivariate extreme value theory, but his method was confined to

two sites and was not entirely addressed to the problem we are consider-

ing here. Hosking and Wallis (1988) conducted a simulation study which

confirmed Stedinger’s results, but also concluded that the effect of inter-site

dependence is less important than that of heterogeneity of the margin pa-

rameters from site to site. However, this result appears to depend on the

model being used to simulate dependence, and the conclusion has not been

universally accepted. Buishand (1990) proposed a method of correcting for

spatial dependence in the distribution of the number of exceedances over

a high threshold, but did not consider how parameter estimation would be

affected by dependence. Dales and Reed (1989) proposed a method of es-

timating spatial dependence based on the notion of an equivalent number

of independent sites, and Reed and Stewart (1989) proposed a variant on

standard graphical methods of estimation which incorporated this concept.

There have also been more theoretical attempts to model spatial depen-

dence, for example by Coles and Tawn (1990) and Smith (1990). However,

none of these techniques leads to an explicit method of estimation taking

into account the spatial dependence.

The method proposed in this paper is in principle applicable for any

problem in which it is the marginal distributions which are of interest. In

this context a viable approach to obtain point estimates is to calculate max-

imum likelihood estimates under the artifical assumption that the series are

independent. The standard errors obtained under the independence assump-

tion are likely to be far too small. The method outlined in Section 2 allows
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us to correct for that and to quote realistic standard errors. An extension

of the methodology allows it to be applied also to likelihood ratio tests. In

Section 3, the method is applied to rainfall data consisting of up to 21 data

points at each of 405 sites. In this example there is heavy spatial depen-

dence and standard error estimation under an assumption of independence

is completely misleading. Finally, a simulation study in Section 4 suggests

that the method still tends to underestimate standard errors to some extent,

but is nevertheless an enormous improvement on assuming independence of

the series.

2. Accounting for spatial dependence

Estimation is based on maximising a likelihood function constructed

under an assumption of independence among series. However, this is not

the true model, so the maximum likelihood estimates do not have the usual

properties. It is nevertheless possible to think of the likelihood equations as a

set of estimating equations for the unknown parameters. This idea underlies

the proposed method and in particular equations (2.1) and (2.9) below. As

a side remark, we note that the same method could be used to treat other

estimating-equation approaches, such as the probability-weighted moments

method proposed by Hosking, Wallis and Wood (1985).

Suppose there are n years’ data at each station and the log likelihood

function from all stations combined, assuming independence of the stations,

is of the form `n(θ) =
∑

i hi(θ), where hi is the contribution to `n from

year i and θ is the vector of unknown parameters. Let θ̂ denote the maxi-

mum likelihood estimate and θ0 the true value. Taylor expansion of the log

likelihood yields the standard approximation

θ̂ − θ0 ≈ {−52 `n(θ0)}−1 5 `n(θ0)

where 5 and 52 denote gradient and hessian respectively. Approximating

the components of the hessian by their expected values (denoted E), we
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have

cov θ̂ ≈ H−1V H−1 (2.1)

where H = −E 52 `n(θ0) and V = cov{5`n(θ0)}.
Now, if the assumed model were correct (i.e. if the series really were

independent) then we would have V = H and we would be left with the

conventional approximation

cov θ̂ ≈ H−1. (2.2)

in which H may be approximated by the observed information matrix

H ≈ −52 `n(θ̂). (2.3)

which is computed directly from the data. In practice we use a quasi-Newton

routine which does not calculate the hessian exactly but gives a good ap-

proximation to it.

Now, however, suppose that the series contributing to `n are not in-

dependent but the contributions hi from separate years are. Suppose also

the hi have a common distribution. Writing

5`n(θ) =
∑

i

5hi(θ)

expresses 5`n as a sum of n independent terms. We estimate the covariance

matrix of 5h1(θ0) using the empirical covariance matrix of the observed

5hi(θ̂) (i = 1, ..., n) and then use

V = cov{5`n(θ0)} = n cov{5h1(θ0)}. (2.4)

Combined with the observed information matrix to estimate H, we have a

numerical approximation to (2.1) itself. This allows us to compute approx-

imate standard errors.
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This calculation assumes that contributions from year to year are in-

dependent and identically distributed. In this case of hydrological data

this is a reasonable assumption, since the effect of inter-site dependence is

much greater than the dependence from one year to the next. Nevertheless,

provided we still assume stationarity, it is possible to go beyond (2.4) by

including correlations between successive hi’s. A first-order correction may

be obtained by including the (estimated) correlations between the compo-

nents of h1 and h2. A second order correction may be obtained by including

also the correlations between h1 and h3, and so on. In the example to be

discussed in Section 3, it was found that the first-order correction led to

estimated standard errors that were not much different from those obtained

directly from (2.4), while the second-order correction produced an estimated

V that was no longer positive definite! The difficulty is presumably due to

the error in estimating correlations from a short (21-year) data series. We

may conclude that the method based on (2.4) is adequate for the data be-

ing considered, though with a longer time series it might be appropriate to

explore this aspect more fully.

Now let us consider the consequences of the above analysis for like-

lihood ratio tests. Suppose θ = (φ, ψ) where φ and ψ are of dimensions p

and q respectively. We wish to test H0 : φ = φ0 against H0 : φ 6= φ0, ψ

being a nuisance parameter. Suppose θ̂ and ̂̂
θ are the maximum likelihood

estimates of θ under H0 and H1 respectively. Taylor expansion of `n yields

2{ln(̂̂θ)− ln(θ0)} ≈ gTH−1g (2.5)

whereH is as before and g = 5`n(θ0). Suppose we partitionH =
(
H11 H12

H21 H22

)
with H11 p × p etc., and write the inverse H−1 =

(
H11 H12

H21 H22

)
. Then it

can be seen that under H0

2{ln(θ̂)− ln(θ0)} ≈ gT
(

0 0
0 H−1

22

)
g. (2.6)
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Combining (2.5) and (2.6),

2{ln(̂̂θ)− ln(θ̂)} ≈ gTCg (2.7)

where

C =
(
H11 H12

H21 H22 −H−1
22

)
. (2.8)

From a standard formula for the inverse of a partitioned matrix, it is

also possible to write H−1
22 = H22−H21(H11)−1H12 which, when substituted

in (2.8), makes it clear why C is of rank at most p. However, this version

has not been used in computation.

If V is the covariance matrix of g, then we may write g = V 1/2z where

z is a (p + q)–vector of independent standard normal variates and V 1/2 is

the positive definite square root of V , and hence gTCg = zTV 1/2CV 1/2z

which has the same distribution as

∑
i

λiz
2
i (2.9)

where λ1, λ2, ... are the eigenvalues of V 1/2CV 1/2. Since C is of rank p, we

may order the eigenvalues so that only the first p terms in (2.9) are non-

zero, and then we have expressed the null distribution of the likelihood ratio

statistic as a weighted sum of p χ2
1 variates. In the case of classical maximum

likelihood, of course, we have λ1 = ... = λp = 1 and the distribution reduces

to the usual χ2
p.

All of this is quite easy to implement computationally. The matrix

V has been diagonalised using Jacobi’s method to calculate eigenvalues and

eigenvectors, and this has been used to compute V 1/2. Then the same rou-

tine is used to compute the λi’s and the percentage points of the likelihood

ratio statistic may be computed by the algorithm of Farebrother (1984).
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3. An example

We consider 21 years’ data on annual maximum of one-day rainfall (in

units of 0.1 mm.) at each of 405 sites in South-East England. Dales and

Reed (1989) have discussed these and related data in some depth. Allowing

for some missing data, there are in all 8259 data points. In addition to the

annual maxima of rainfall, also recorded are the E-W and N-S coordinates of

the site of the rain gauge and the SAAR (Standard Annual Average Rainfall)

and altitude at each site.

A widely used model for annual maxima is the Generalised Extreme

Value model

F (y) = exp

[
−

{
1 +

ξ(y − µ)
σ

}−1/ξ

+

]
(3.1)

in which µ, σ and ξ represent location, scale and shape parameters. The

simplest model is to assume that these three parameters are common to all

the data sites. This, however, seems likely to be too simple an assumption,

so we also consider models in which µ, σ and ξ depend on covariates. Dales

and Reed (1989) showed that, of all the known covariates, SAAR has by

far the highest correlation with annual maximum rainfall, so initially we

consider just this. The SAAR has been standardised to have mean 0 and

variance 1 over the 405 stations, and is then denoted x. A general model is

of the form

µ =
nµ∑
j=0

µjx
j , σ =

nσ∑
j=0

σjx
j , ξ =

nξ∑
j=0

ξjx
j , (3.2)

where nµ, nσ and nξ represent model orders which must be determined.

Six models were fitted with the following values of negative log likelihood

(NLLH):
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Model nµ nσ nξ No. Pars. NLLH
1 0 0 0 3 50094.7
2 1 0 0 4 49919.0
3 1 1 0 5 49918.1
4 1 1 1 6 49917.9
5 2 0 0 5 49917.1
6 3 0 0 6 49911.6

Initial inspection of these figures suggests that Model 2 is a great

improvement on Model 1, that Models 3-5 do not improve significantly on

Model 2, but that Model 6 should be examined further.

In fact, a more detailed analysis by the method of Section 2 confirms

that models 1, 3, 4 and 5 need not be considered further, so we concentrate

on models 2 and 6. For model 2, the parameter estimates are µ̂0 = 316.1,

µ̂1 = 17.6, σ̂0 = 84.0, ξ̂0 = 0.065. The standard errors using the conventional

method based on observed information are 1.0, 0.9, 0.7 and 0.007 but those

calculated via the new method are 9.5, 2.8, 6.3, 0.044. The sharp increase,

when dependence is taken into account, is evident. The first– and second–

order corrections for dependence between years, mentioned in Section 2,

were also calculated and produced standard errors of 10.0, 2.4, 6.8 and

0.051 (first-order), 10.9, 2.8, 5.9, 0.052 (second-order). These are somewhat

different but not greatly so, when compared with the difference from the

conventional standard errors.

Under model 6 the parameter estimates are are µ̂0 = 316.0, µ̂1 = 12.7,

µ̂2 = −0.85, µ̂3 = 2.30, σ̂0 = 83.8, ξ̂0 = 0.066 with standard errors 1.4, 1.6,

1.13, 0.68, 0.8, 0.008 (conventional method), 9.5, 3.8, 1.78, 0.95, 7.9, 0.046

(new method). The critical parameter µ3 seems clearly significant if assessed

by the conventional standard error, but much less so if the new method is

used. A likelihood ratio test of the difference between the two models yields a

likelihood ratio statistic 2(49919.0-49911.6)=14.8 which would be significant

at 0.1% under the conventional χ2
2 approximation. The new approximation

yields λ1 = 2.47 and λ2 = 1.50 in (2.9), and the p-value of the observed
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value 14.8 is 2.6% - still apparently significant, but less obviously so. In fact

a plot of the two µ functions (Fig. 1) shows that over the observed range of

x (roughly, −2 to 2) there is virtually no difference between the two curves.

Numerical estimates of return values confirmed that, in comparison with

the standard errors, there is no practical difference over this range in the

results produced by the two models, and for this reason, it was decided to

use Model 2 in preference to Model 6.

The next thing to consider is the use of the model to obtain estimates

of return values. The N -year return value is defined in terms of µ, σ and ξ

by

qN = µ+ σ
{− log(1− 1/N)}−ξ − 1

ξ
. (3.3)

A point estimate may be obtained by substituting the maximum likelihood

estimates of the unknown parameters, and the approximate variance of this

estimate may be represented as (5qN )T cov{θ̂}(5qN ) where 5qN is the

vector of partial derivatives of qN with respect to the parameters θ evaluated

at the maximum likelihood estimator θ̂. For Model 2 with x = −1, 0 and 1,

this has been calculated with the following results:

N 10 20 50 100 500
x = −1 502.1 573.8 671.7 749.2 942.2
s.e.(old) 2.7 3.9 6.1 8.4 15.8
s.e.(new) 22 30 43 57 99
x = 0 519.7 591.4 689.3 766.8 959.8

s.e.(old) 2.6 3.8 6.1 8.4 15.8
s.e.(new) 20 28 42 55 98
x = 1 537.3 609.0 707.0 784.4 977.4

s.e.(old) 2.7 3.9 6.2 8.4 15.9
s.e.(new) 19 27 40 54 97

Here the old and new standard errors are those calculated using the

conventional observed information matrix, and by the new method.

The main message from this table is the very considerable increase in
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standard error estimate as a result of adopting the new method of assessing

standard errors.

So far, we have only considered SAAR as a covariate. The results in

Dales and Reed (1989) suggested that the three other covariates available

(E-W coordinate, N-S coordinate and altitude) would not have a significant

effect on the fit. To test this, each parameter in turn was added to Model

2, as an additional linear term on µ, with the following results. From now

on we quote only the new standard errors.

E-W coordinate: new parameter estimate is −0.1, standard error 4.3,

likelihood ratio statistic 0.012, λ1 = 21.6.

N-S coordinate: new parameter estimate is 5.35, standard error 5.65,

likelihood ratio statistic 17.4, λ1 = 19.8 (so the ratio 17.4/19.8 =0.88 is

taken from an approximate χ2
1 distribution, under the null hypothesis).

Altitude: new parameter estimate is 1.39, standard error 3.0, likeli-

hood ratio statistic 4.2, λ1 = 10.0.

It is clear that none of these is significant.

Finally, we consider the goodness of fit. One way to test this is via

a chi-squared statistic after grouping the data: in this case the approxi-

mate distribution of a likelihood ratio statistic may be computed by the

method that has been outlined, so extending the teachnique from parame-

ter estimation to goodness of fit. This has not been tried here, but instead

a probability plot of the residuals has been drawn in Figure 2. To construct

this plot, the marginal distributions of the data were first transformed to

a standard Gumbel distribution (F (x) = exp(−e−x)), and the m = 8259

ordered values plotted against − log[{− log(i − 1/2)/m}], 1 ≤ i ≤ m, a

standard diagnostic procedure with extreme value data. This plot takes no

account of the dependence in the data, but it can be seen that the model

is an excellent fit except for very few order statistics at the upper end. In

fact there is some suggestion that the largest value is an outlier but when

this was removed and the model refitted there was very little change in the
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estimates. For example, with x = 0, the return values just quoted of 519.7,

591.4, 689.3, 766.8 and 959.8 become 519.2, 590.4, 687.6, 764.3 and 954.9,

very little different when compared with the standard errors. A method of

adjusting the plot to allow for dependence was proposed by Reed and Stew-

art (1989) but their method uses date information to identify and eliminate

dependent peaks, and this information was not available to us here.

To summarise, the new method of calculating standard errors and

the critical points of likelihood ratio statistics allows us to fit a regression

model to the marginal distributions of the data, and to quote estimates and

standard errors for quantities of interest such as return values, while making

a realistic correction for the effect of spatial dependence.

It should, however, be pointed out that the method does not help us

to estimate parameters that themselves depend on the dependence between

sites. For instance, there is interest in areal reduction factors, in which

the distribution of the maximum over a set of sites is compared with the

distributions of individual sites. This cannot be computed without some

form of model for dependence among sites. Dales and Reed (1989) and Smith

(1990) have made proposals for this, but it is really a different problem from

the one being studied here.

4. A simulation study

A simulation study was performed to assess the validity of the approx-

imation for calculating standard errors. The following results are all based

on 1000 replications.

For each replication, 10 years’ of independent data were generated

at each of 100 dependent sites. It is desirable to have a quick and simple

algorithm to generate dependent data with the right marginal distribution,

and the following scheme was adopted:

Step 1: Generate V0, V1, ..., V100 independent unit exponential.

Step 2: Let Wi = V0 + Vi, 1 ≤ i ≤ 100. At this stage the W ’s have a
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gamma distribution with shape parameter 2.

Step 3: Let Xi = Wi − log(1 +Wi), 1 ≤ i ≤ 100. This transforms the

marginal distribution back to unit exponential.

Step 4: Let Yi be −log(Xi) if ξ = 0, otherwise (X−ξ
i − 1)/ξ.

Step 5: Repeat Steps 1-4 10 times to get 10 independent years’ data.

This was done with ξ = 0, 0.2 and −0.2. In addition, for comparison,

the same simulation was performed with all sites independent.

The parameters were estimated by maximum likelihood and the 10-

year, 50-year and 250-year return values calculated, together with their stan-

dard errors by both methods.

For the dependent data with ξ=0, the following results were obtained

for the true root mean squared error, and the (average over 1000 simulations)

standard errors as estimated by the old and new methods:

Parameter True RMSE Old s.e. New s.e
µ 0.25 0.034 0.23
σ 0.13 0.025 0.12
ξ 0.089 0.023 0.073
q10 0.45 0.076 0.40
q50 0.80 0.17 0.67
q250 1.39 0.34 1.17

It can be seen that the new method of computing standard errors

greatly improves on the old, but is still something of an underestimate.

This is confirmed when we consider the actual coverage probability of

a confidence interval for qN constructed so as to have a half-width of two

standard errors. Using the old standard errors, this was 24%, 34% and 40%

respectively for N = 10, 50 and 250. With the new standard errors, these

were improved to 88%, 83% and 82%, which are still short of the nominal

value of 95%.

These figures were broadly confirmed with simulations assuming ξ =

0.2 and ξ = −0.2. The case ξ = 0.2 is expected to be the most troublesome

of the three, because this is the longest-tailed case, and it certainly is the
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case that the standard errors are the largest in this case. For example,

for q250 the true RMSE based on 100 simulations was calculated as 3.86,

compared with averages of 0.91 and 3.45 as estimated by the old and new

methods. The corresponding coverage probabilities for N =10, 50 and 250

were 24%, 32% and 38% under the old method, 88%, 83% and 83% under

the new. In the case of ξ = −0.2 the coverage probabilities were 24%, 35%,

42% and 88%, 80% and 79%. The coverage probabilities do not seem very

sensitive to ξ.

For comparison, the same calculations were carried out with the sta-

tions independent. In this case the old and new methods of calculating

standard errors are asymptotically equivalent, but of course they do not

give identical answers in practice. For true value ξ = 0 we obtain:

Parameter True RMSE Old s.e. New s.e
µ 0.034 0.035 0.032
σ 0.025 0.026 0.023
ξ 0.021 0.022 0.020
q10 0.073 0.078 0.072
q50 0.16 0.17 0.15
q250 0.30 0.32 0.29

In this case the estimated standard errors (old method) are virtually

identical to those quoted in the dependent case, but here they are very close

to the true values which are, of course, much smaller. Curiously, the new

method still tends slightly to underestimate the true standard error. The

coverage probabilities of nominal 95% confidence intervals are 96%, 96%,

96% (old method), 92%, 92%, 91% (new method). With true ξ = 0.2 the

corresponding coverage probabilities are 96%, 96%, 96% and 92%, 93%, 92%

while with ξ = −0.2 they are 97%, 96%, 96% and 92%, 91%, 90%.

Our conclusions are as follows. When the data are dependent, the old

method of computing standard errors, which ignores dependence, leads to

gross underestimates of sampling variability and very poor coverage prob-

ability for confidence intervals based on those standard errors. The new
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method still seems to underestimate sampling variability and to overesti-

mate confidence coefficients - in the simulations, nominally 95% confidence

intervals had a true coverage probability of about 85%. Corresponding sim-

ulations with independent data showed the old and new methods much more

comparable, but there still seems to be some tendency for the new method

to underestimate standard errors and to overestimate confidence coefficients.

However, even though there is still scope for improvement, it is clear that

the new method is a great improvement on the old and goes a long way

towards obtaining accurate interval estimates.
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