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ABSTRACT A common question in the analysis of binary data is how to deal with overdis-

persion. One widely advocated sampling distribution for overdispersed binary data is the

beta-binomial model. For example, this distribution often is used to model litter e�ects in

toxicological experiments. Testing the null hypothesis of a beta-binomial distribution against

all other distributions is diÆcult, however, when the litter sizes vary greatly. Herein, we

propose a test statistic based on combining Pearson statistics from individual litter sizes,

and estimate the p-value using bootstrap techniques. A Monte Carlo study con�rms the

accuracy and power of the test against a beta-binomial distribution contaminated with a few

outliers. The method is applied to data from environmental toxicity studies.
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1 Introduction: Extra-Binomial Variability

In many experiments encountered in the biological and biomedical sciences, data are gen-

erated in the form of proportions, Y=n, where Y is a non-negative count and is bounded

above by the positive integer n. When n is assumed �xed and known, Y might be modeled

as binomial(n; p); i.e., view Y as the sum of n independent Bernoulli random variables,

Wm (m = 1; : : : ; n), with p = EWm. If some correlation existed among the Wm, then Y

would no longer be distributed as binomial. This situation is not uncommon; e.g., in labora-

tory tests for developmental toxicity the Wm can represent the binary responses of fetuses

within a litter of size n from a female rodent exposed to some toxic stimulus (Haseman

and Piegorsch, 1994). Since the pregnant rodent is the experimental unit in this situation,

the litter-mates represent correlated binary observations, and the sum of those observations

may not �t the binomial sampling model. Correlated Bernoulli responses within a litter

create what is known as a litter e�ect and often such an e�ect is modeled hierarchically.

The introduction of heterogeneity in p induces correlation between the fWmg and therefore

may be used to model litter e�ects. If p is beta distributed and (Y jn; p) � binomial(n; p),

then the marginal density of Y given n is beta-binomial (Williams, 1975; Haseman and

Kupper, 1979). Additional details of this model are provided in Section 2.

In cases with strong evidence of extra-binomial variability, the beta-binomial model is

preferable to the binomial model. Testing for departure from the binomial distribution has

been discussed by Cochran (1954) and Tarone (1979) amongst others. Risko and Margolin

(1996) provide a recent review and commentary on these methods. In contrast to the

binomial distribution, however, formal testing of whether the beta-binomial distribution

�ts overdispersed proportion data has not been discussed as thoroughly in the literature.

In Section 3 a goodness-of-�t test for the beta-binomial model is constructed by boot-

strapping chi-squared tests. Simulation results in Section 4 show that the method provides

reasonably accurate estimates of the size of the test, and that the test is powerful against a

beta-binomial model contaminated with outliers. Section 5 applies the test to toxicological

data sets, and we end in Section 6 with a short discussion.
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2 Description of Beta-Binomial Model

One characterization of the beta-binomial model employs the following hierarchy: within

the context of a developmental toxicity experiment, assume that a given study consists of

J litters of animals, and that ni is the number of pups in the ith litter, for i = 1; : : : ; J .

The litter sizes ni are treated as �xed constants. Let Yi denote the number of responses in

the ith litter. Conditional on pi, the Yi are independent binomial random variables

(Yi j ni; pi) � binomial(ni; pi); i = 1; : : : ; J:

The random variables fpi; i = 1; : : : ; Jg are independent and have the common beta density

f(p j �; �) = [B(�; �)]�1p��1(1� p)��1 (0 < p < 1);

where � and � are unknown positive constants, and B(�; �) is the beta function. The

unconditional distribution of Yi is expressed by the beta-binomial probability

P (Yi = y j ni; �; �) =

 
ni

y

!
B(�+ y; � + ni � y)

B(�; �)
; (1)

for y = 0; : : : ; ni; i = 1; : : : ; J . If one de�nes the strictly positive parameters � and � by

� = (�+ �)�1� and � = (�+ �)�1 (2)

as suggested by Williams (1975), then the mean and variance of Yi can be expressed by

E(Yi j ni; �; �) = ni� and Var(Yi j ni; �; �) = ni�(1� �)(1 + �)�1(1 + ni�)

for i = 1; : : : ; J . The parameter � may be referred to as the mean parameter of the marginal

proportions, where 0 < � < 1. The parameter � is called the dispersion parameter, and if

� > 0, then the data are said to be overdispersed. In some settings the variance of Yi may

appear smaller than that for the binomial distribution, suggesting underdispersion (Prentice,

1986; Engel and te Brake, 1993), but this is not common in developmental toxicology and

hence we will not study it here.

The maximum likelihood estimator (MLE) of (�; �) can be shown to be consistent

(Lehmann, 1983, pp. 409{413) and is determined numerically. As � # 0, the variance of

(Yijni; �; �) monotonically decreases to ni�(1��), and (Yijni; �; �) converges to a binomial

random variable.
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3 Approaches to Goodness-of-Fit Testing

Suppose the data consist of independent pairs f(Yi; ni); i = 1; : : : ; Jg as described in Sec-

tion 2, and suppose the goal is to test the null hypothesis that the data follow a beta-binomial

distribution (1) against the alternative hypothesis that the distribution is not of this form.

Throughout, we will use the (�; �) parametrization (2) to represent a speci�c member of

the beta-binomial family.

3.1 Previous Test Statistics

For discrete distributions, Pearson's �2 statistic is often used for testing goodness-of-

�t. The diÆculty with this in the case of toxicity experiments is that the data usually

represent information from litters of di�erent sizes, and in this case it is not easy to apply

the �2 test. Mantel and Paul (1987) resolved this problem by assuming that the litter

sizes fni; i = 1; : : : ; Jg are themselves random variables from some known distribution, and

based the Pearson statistic on the unconditional probability distribution of the Yi using the

MLE of (�; �). This approach, however, loses information about the individual litter sizes

when determining the observed numbers of the Yi, and thus could conceal large variations

in the proportions of responses among litters.

A di�erent approach is based on likelihood ratio tests. Pack (1986) proposed using the

likelihood ratio for testing the speci�c question of whether two groups of beta-binomial

data have the same or two di�erent values of (�; �). Lockhart et al. (1992) used the

likelihood ratio for testing the beta-binomial model against the alternative that the Yi

have independent binomial distributions with parameters (ni; pi). There are some technical

diÆculties with this latter approach, however; since the number of unknown parameters pi

goes to in�nity as J !1, the usual asymptotic theory developed for likelihood ratio tests

cannot necessarily be applied in this situation.

Liang and McCullagh (1993) proposed a test for determining whether the mean-variance

relationship across di�erent litter sizes is consistent with the beta-binomial model. Their

method accounted for extra-binomial variability of a form that included the beta-binomial,

but employed only a quasi-likelihood �tting algorithm to estimate the model parameters.

Thus the formal beta-binomial assumption in (1) was not used. The procedure was presented
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more as an approach for comparing di�erent extra-binomial variance structures when the

mean-variance relationship is the only distributional property under study, rather than as

a formal test for goodness-of-�t to the beta-binomial.

More recently, Brooks et al. (1997) considered overdispersion models for developmental

toxicity data that included the beta-binomial, but that also allowed for various �nite mix-

tures of binomials and beta-binomials. In fact, the main emphasis of their paper was to

employ �nite mixture models to determine which model had the best �t, by examining the

maximized likelihood function. For assessing the quality of the beta-binomial assumption,

they avoided specifying an alternative model by working with the maximized likelihood

itself, rather than with a likelihood ratio. However, Garren et al. (2000) showed that the

omnibus goodness-of-�t test proposed by Brooks et al. is not necessarily sensitive to non-

beta-binomial data even as the number of litters gets large. In the setting considered by

Garren et al. (2000), in which the Brooks test was compared with a Pearson test in a situ-

ation with common litter sizes, the Pearson test was overwhelmingly better. The Pearson

test is not directly applicable to unequal litter size problems, but the results of Garren et

al. (2000) suggest that it would be pro�table to look for something which generalizes the

Pearson test to this setting.

3.2 A Bootstrap Test Statistic

The diÆculties of constructing a simple, consistent goodness-of-�t test prompt us to

return to the Pearson statistic as in Mantel and Paul (1987), but with some modi�cations

to employ information in the di�erent litter sizes, and to use bootstrapping to determine

the null reference distribution. This approach is in line both with the general approach to

bootstrapping goodness-of-�t statistics advocated by Romano (1988), and with the concept

of an omnibus test advocated by Zhang (1999).

Suppose there are J1 litters of size n1, J2 litters of size n2, and so on up to JK litters

of size nK, where Jk > 0 (k = 1; : : : ;K) and
P

k Jk = J . Our beta-binomial goodness-of-�t

test statistic � is constructed as follows:

1: Calculate individual Pearson goodness-of-�t test statistics for each litter size. Thus,

for each litter size n = nk (k = 1; : : : ;K), let Oy;n denote the observed number of litters of
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size n which contain y responses. Similarly, let Ey;n denote the expected value under (1) of

Oy;n, assuming Jk litters of this size, where (�; �) is estimated by the MLE (�̂; �̂). De�ne

the individual Pearson statistic to be

Qn =
nX

y=0

(Oy;n �Ey;n)
2=Ey;n:

For a particular realization, let qn denote the observed value of Qn.

2: Estimate the distribution function of the Qn by simulation. Thus, for each litter

size n = nk (k = 1; : : : ;K), generate a large number JnM of beta-binomial pseudo-random

variates with parameters (�̂; �̂), where M does not depend on n. Repeat the calculation

in step 1 to generate a parametric bootstrap sample Q�

n;1
; : : : ; Q�

n;M
such that each Q�

n;m

is based on Jn litters. Note that � and � are re-estimated for each bootstrap sample. The

distribution function of the Qn is estimated to be

�n =M�1

MX
m=1

I(Q�

n;m < qn);

where I(�) is the indicator function. The null distribution of �n is approximately uniform

(0; 1) though not exactly uniform, even in the limit as M ! 1, since Qn is discrete.

Asymptotic uniformity would be achieved if �n were instead de�ned as a randomized statistic

(c.f., Hogg and Craig, 1995, p. 291), but we chose not to utilize randomized statistics herein.

3: Combine the estimated distribution functions �n by computing the estimated p-value

� = 1�

�
max

k=1;:::;K

�nk

�
K

: (3)

Intuitively, the null hypothesis should be rejected if any �n is too large; i.e., if � is too small.

The power transformation in (3) ensures that, if each �n is approximately uniform (0; 1),

then � also is approximately uniform (0; 1), using a standard approach to order statistics

(c.f., Hogg and Craig, 1995, pp. 193{200). Hence, the statistic � estimates the p-value, and

an approximate level �0 test is obtained by rejecting the null hypothesis whenever � < �0.

Since the distribution of � is discrete, our proposed bootstrap method theoretically can

be replaced by computation of the exact distribution, but the amount of computing time

would be enormous. We prefer, therefore, to use the bootstrap. We explore the operating

characteristics of this test in a modest Monte Carlo study in the next section.

6



4 Monte Carlo Study

We performed a Monte Carlo study to determine how well our test statistic proposed in

Section 3 performs with a sample size of J = 50. The accuracy of the test's size was ex-

amined by simulating a beta-binomial distribution and testing for departure from it, while

the power of the test was examined by simulating a beta-binomial distribution mixed with

a binomial distribution and again testing for departure from the beta-binomial. Both sets

of simulations used litter sizes from a toxicological study considered below, in which the 50

litters ranged in size from 6 to 18 (see Table 1a). To study size and power characteristics,

the underlying parameters of the beta-binomial distribution were chosen to vary over all

combinations of � 2 f0:05; 0:1; 0:15g and � 2 f0; 0:05; 0:1g. In the alternative distribu-

tion for the power study the binomial distribution was assigned the response probability

p 2 f0:7; 0:8; 0:9g, and the beta-binomial distribution was chosen with mixing probability

f0:85; 0:9; 0:95g. Notice that when the alternative model has a large mixing probability, the

model can be viewed as a beta-binomial model contaminated with a few outliers. The num-

ber of bootstrap samples was set to M = 1000, and the number of independent replications

was 2000. The nominal levels, �0, were taken as 0:1, 0:05, 0:025, and 0:01. The estimated re-

jection probabilities (size or power) are the proportions of the 2000 replicates where � < �0.

These appear in Tables 2a (size) and 3a (power). With 2000 replicates, our estimates of the

rejection probability, 
, have approximate standard errors of
p

(1� 
)=2000. For example,

these estimates of standard error are 0:0067, 0:0049, 0:0035, and 0:0022 when 
 has values

0:1, 0:05, 0:025, and 0:01, respectively.

Table 2a illustrates that the estimated size is somewhat close to its nominal level, �0,

although the tendency is to be slightly above it. Table 3a tends to suggest that large

mixing probabilities produce large power when the overall mean, �, of the beta-binomial

model di�ers greatly from the response probability, p, in the binomial model. Large mixing

probabilities (� 0:95) frequently produce at least one extreme value of y. This increases

the corresponding statistics Oy;n and �n and decreases � , since the Ey;n typically are not

greatly in
uenced by a small number of extreme values of y.

To explore further the operating characteristics of this bootstrap approach, we increased

the number of litters to J = 100 in the Monte Carlo evaluations. Tables 2b and 3b were
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produced, respectively, in the same way as Tables 2a and 3a, except Tables 2b and 3b used

J = 100 litters instead of 50. These additional litters were generated by doubling the 50

litter size frequencies, Jk, in Table 1a. Results from Tables 2a and 2b are similar, indicating

that perhaps some of the error when estimating size comes from using a limited number of

bootstrap samples and replications, rather than from using only 50 or 100 litters. Table 3b

shows greater power than Table 3a for the binomial probability p = 0:9. The other values

of p did not result in much di�erence in power between Tables 3a and 3b. The Fortran

program which produced Tables 2 and 3 is quite versatile and is available at

http://www.stat.unc.edu/postscript/rs/betabin.

5 Examples

As an illustration we applied our goodness-of-�t test statistic to data from three experiments

involving pregnant mice, studied originally by Lockhart et al. (1992). Those experiments

involved matings between a male and a female mouse to examine damage in the resulting

embryos based on dominant lethal mutations. To assess such damage, approximately two

weeks after mating, the pregnant females were sacri�ced and their uterine contents were

examined. For each litter the number of viable implants and the number of non-viable

implants were determined, where viable was de�ned before the experiment begins (Lockhart

et al., 1991). None of these parent mice were exposed to any toxic chemicals before or during

the experiment.

Lockhart et al. (1992) noted that the majority of proportions from these studies ex-

hibited signi�cant departure from the simple binomial model, and considered use of the

beta-binomial in (1) to model the overdispersion. A concern of interest was whether this

was an adequate assumption, i.e., was there adequate goodness-of-�t for the beta-binomial

model? To answer this question, we can apply the bootstrap method from Section 3.2. Our

goodness-of-�t results are summarized in Table 4, which are based on the data from Tables

1a-1c.

In Table 4, the number of bootstrap samples used is M = 100 000 when determining

the observed signi�cance level, � . The table indicates that data sets in Tables 1b and
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1c are signi�cant at level 0:05. A more detailed examination of the data set in Table 1c

indicated the presence of three unlikely (y; n) pairs: (7; 7), (9; 9), and (5; 8). These appear

to be outliers since they occur with very small probabilities under the associated MLE

(�̂; �̂) = (0:068; 0:064). When these three data pairs were removed, the p-value increased

from � = 0:000 to � = 0:054. This shows that although the outliers partly explain the

failure of the beta-binomial distribution, they are not the sole reason for it. Even when the

outliers are removed, the test is borderline signi�cant.

Six toxicological data sets analyzed and published by Brooks et al. (1997) also are

analyzed by our techniques. Our results are summarized in Table 5, again using M =

100 000 bootstrap samples. The �rst two data sets are published in Brooks et al. (1997).

Data sets #3-5 were �rst published by Haseman and Soares (1976), and the sixth one was

�rst published by Aeschbacher et al. (1977). [The tables in Brooks et al. (1997) contain

some minor topographical errors: In their Table 1 the entry at position (8, 14) should be

moved to (9, 14); in Table 2 the entry of \one" should appear at position (11, 16); in Table

5 the entry at position (9, 10) should be moved to (10, 10).] Our test statistic produced

p-values of 0.144, 0.231, 0.000, 0.000, 0.009, and 0.375 for data sets #1-4, respectively. We,

therefore, conclude that only data sets #3-5 from Brooks et al. depart signi�cantly from

the beta-binomial model.

Although satisfactory results could have been obtained in Tables 4 and 5 with as few as

M = 1000 bootstrap samples, we used M = 100 000 because we wanted to determine with

high accuracy how well the bootstrap method really works. Using M = 100 000 and 205

litters, the �rst data set published in Brooks et al. (1997), requires about 7 1/2 hours on

a Sun Ultra 2 computer, and using M = 1000 requires less than �ve minutes. The Fortran

program which produced Tables 4 and 5 is applicable to any data set involving proportions

and is available at the same web site referenced in Section 4.

6 Discussion

The beta-binomial model is a common choice when analyzing proportion data with some

form of litter e�ect. This model is quite rich, has some intuitive appeal, and is relatively
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simple to use since its probability distribution is tractable. Although the model is popular

for the above reasons, it has not undergone much goodness-of-�t analysis in the literature.

Our method is an attempt at determining simple signi�cance levels for testing �t to the

beta-binomial model, and the test seems to be powerful when the data are generated by

certain mixture models. In particular, our method is powerful when the alternative model

is beta-binomial contaminated with a small proportion of outliers.

Our test statistic, � , can be extended easily to other models when testing goodness-

of-�t. For example, one may wish to model toxicity data by a beta-binomial distribution,

where the population mean, �, is a function of the dose of a chemical given to the dam

(Catalano and Ryan, 1994, Section 4). Additional parameters may need to be estimated by

maximum likelihood or some other approach, although the basic technique for computing � ,

the observed signi�cance level, remains the same. Likewise, goodness-of-�t to other forms of

extra-binomial model such as the correlated-binomial model or the beta-correlated-binomial

model (Brooks et al., 1997) may be tested using this same basic technique. These models

might be considered reasonable alternatives to beta-binomial.

Computation time was the greatest drawback when producing the simulation results in

Tables 1 and 2; hence, only a modest simulation study was performed. Re-estimating �

and � using maximum likelihood for each bootstrap sample is rather time consuming. To

save computing time simulations were performed without re-estimating � and �, but the

estimated sizes were far below the nominal levels and are not shown herein.

We note in closing that a sample of 50 litters may appear large, encouraging use of the

�2 approximation of Qn, the individual Pearson statistics, rather than the bootstrap. But

in fact, a sample of 50 litters is quite small, relative to asymptotic approximations. For

example, if (�; �) = (0:05; 0) and J = 50, then Ey;n is much less than 1 for most values

of (y; n). Thus, in most practical situations J = 50 may not be a large enough number of

litters to validate replacing the bootstrap with some asymptotic approximation.
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TABLE 1a. Frequency of litter sizes with number of non-viable

implants in Swiss CD-1 mice, from Lockhart et al. (1992)

y, number of non-

viable implants

0 1 2 3 4

6 - 1 - - -

7 - - - - -

8 - - - - -

9 1 - - - -

10 - - - - -

n, 11 1 4 - - 1

litter 12 4 2 1 - -

size 13 - 2 1 1 -

14 4 2 2 - 1

15 4 6 2 1 -

16 3 2 - - 1

17 - 1 - - -

18 1 1 - - -

Note: This data set consists of J = 50 litters.

15



TABLE 1b. Frequency of litter sizes with number of non-viable implants in

Swiss CD-1 mice after sham intraperitoneal injection, from Lockhart et al. (1992)

y, number of non-

viable implants

0 1 2 3 4

2 1 - -

3 2 1 - -

4 - - - 1 -

5 2 - - - -

6 - 1 - - -

7 3 2 - - -

n, 8 3 - - 1 -

litter 9 9 3 - - -

size 10 20 9 1 1 -

11 42 15 4 - -

12 26 15 4 - -

13 10 5 4 - 2

14 5 2 2 - 1

15 - 1 - - 2

16 1 - - - -

Note: This data set consists of J = 201 litters.
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TABLE 1c. Frequency of litter sizes with number of non-viable implants in

(SEC � C57L)F1 � [(SEC � C57L)F1 � C3H � 101] mice, from Lockhart et al. (1992)

y, number of non-viable implants

0 1 2 3 4 5 6 7 8 9

4 1 - - - -

5 - 1 - - - -

6 1 2 - - - - -

7 3 2 - - 1 - - 1

8 3 - - - - 1 - - -

9 4 2 1 - - - - - - 1

n, 10 12 4 1 1 - 1 - - - -

litter 11 12 9 4 - 1 - - - - -

size 12 20 11 8 - - - - - - -

13 38 20 12 2 - - - - - -

14 20 17 5 1 1 - - - - -

15 12 10 2 - - - - - - -

16 4 3 3 1 - - - - - -

17 1 - 1 - - 1 - - - -

18 - - 1 - - - - - - -

Note: This data set consists of J = 263 litters.
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TABLE 2a. Estimated sizes of proposed test, based on simulations

from beta-binomial distributions using 50 litters

Estimated size at nominal level �0

� � �0 = 0:1 �0 = 0:05 �0 = 0:025 �0 = 0:01

0.05 0.00 0.0765 0.0420 0.0180 0.0060

0.05 0.05 0.1155 0.0675 0.0305 0.0210

0.05 0.10 0.1225 0.0710 0.0395 0.0250

0.10 0.00 0.0855 0.0450 0.0265 0.0160

0.10 0.05 0.1100 0.0655 0.0330 0.0195

0.10 0.10 0.1180 0.0635 0.0260 0.0190

0.15 0.00 0.0835 0.0465 0.0230 0.0155

0.15 0.05 0.1165 0.0625 0.0285 0.0160

0.15 0.10 0.1025 0.0585 0.0300 0.0210

TABLE 2b. Estimated sizes of proposed test, based on simulations

from beta-binomial distributions using 100 litters

Estimated size at nominal level �0

� � �0 = 0:1 �0 = 0:05 �0 = 0:025 �0 = 0:01

0.05 0.00 0.0775 0.0365 0.0185 0.0125

0.05 0.05 0.1270 0.0770 0.0395 0.0250

0.05 0.10 0.1155 0.0615 0.0295 0.0195

0.10 0.00 0.0925 0.0505 0.0285 0.0180

0.10 0.05 0.0980 0.0570 0.0295 0.0220

0.10 0.10 0.1170 0.0600 0.0280 0.0190

0.15 0.00 0.0860 0.0500 0.0255 0.0160

0.15 0.05 0.1110 0.0610 0.0335 0.0275

0.15 0.10 0.0985 0.0605 0.0310 0.0220
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TABLE 3a. Estimated power of proposed test, based on

simulations from mixture models using 50 litters

beta-binomial binomial mixing Estimated power at nominal level �0

� � p probability �0 = 0:1 �0 = 0:05 �0 = 0:025 �0 = 0:01

0.05 0.00 0.7 0.85 0.2530 0.1495 0.0785 0.0545

0.05 0.05 0.7 0.90 0.2510 0.1445 0.0790 0.0595

0.05 0.10 0.7 0.95 0.3475 0.2420 0.1470 0.1070

0.10 0.00 0.8 0.85 0.4200 0.2550 0.1465 0.1115

0.10 0.05 0.8 0.90 0.4635 0.3185 0.1990 0.1360

0.10 0.10 0.8 0.95 0.5215 0.3845 0.2500 0.1875

0.15 0.00 0.9 0.85 0.5465 0.3915 0.2555 0.1970

0.15 0.05 0.9 0.90 0.5720 0.4355 0.2855 0.2225

0.15 0.10 0.9 0.95 0.6600 0.5295 0.3675 0.2910

TABLE 3b. Estimated power of proposed test, based on

simulations from mixture models using 100 litters

beta-binomial binomial mixing Estimated power at nominal level �0

� � p probability �0 = 0:1 �0 = 0:05 �0 = 0:025 �0 = 0:01

0.05 0.00 0.7 0.85 0.2850 0.1410 0.0705 0.0445

0.05 0.05 0.7 0.90 0.2370 0.1300 0.0605 0.0430

0.05 0.10 0.7 0.95 0.3195 0.1960 0.1145 0.0725

0.10 0.00 0.8 0.85 0.5735 0.3850 0.2005 0.1340

0.10 0.05 0.8 0.90 0.4880 0.3070 0.1685 0.1065

0.10 0.10 0.8 0.95 0.5685 0.4025 0.2475 0.1775

0.15 0.00 0.9 0.85 0.8050 0.6615 0.4825 0.3800

0.15 0.05 0.9 0.90 0.7045 0.5700 0.3975 0.3040

0.15 0.10 0.9 0.95 0.7850 0.6350 0.4500 0.3520
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TABLE 4. Analysis of dominant lethal data

Table Number MLE p-value

number of litters �̂ �̂ �

1a 50 0.075 0.021 0.333

1b 201 0.051 0.041 0.010

1c 263 0.068 0.064 0.000

TABLE 5. Analysis of data sets published by Brooks et al. (1997)

Data set Number MLE p-value

number of litters �̂ �̂ �

1 205 0.090 0.074 0.144

2 211 0.112 0.111 0.231

3 524 0.090 0.073 0.000

4 1328 0.109 0.045 0.000

5 554 0.074 0.081 0.009

6 127 0.069 0.063 0.375
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