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SUMMARY

When faced with proportion data that exhibit extra-binomial variation, data analysts often

consider the beta-binomial distribution as an alternative model to the more common bino-

mial distribution. A typical example occurs in toxicological experiments with laboratory

animals, where binary observations on fetuses within a litter are often correlated with each

other. In such instances, it may be of interest to test for the goodness-of-�t of the beta-

binomial model; this e�ort is complicated, however, when there is large variability among

the litter sizes. We investigate a recent goodness-of-�t test proposed by Brooks, Morgan,

Ridout, and Pack (1997, Biometrics 53, 1097{1115) but �nd that it lacks the ability to

distinguish between the beta-binomial model and some severely non-beta-binomial models.

Other tests and models developed in their article are quite useful and interesting, but are

not examined herein.
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1 Introduction

A common form of discrete data in many biological experiments is the proportion X=n,

where X is the number out of n of subjects responding to some stimulus. In some settings,

data in the form of proportions can exhibit variability in excess of that assumed under the

simple binomial model. A common probability distribution for describing such overdispersed

data is the beta-binomial (Skellam, 1948), with mass function

P (X = x j n) =
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for x = 0; : : : ; n. Under this model, the expected value of X is E(Xjn) = n� and the

variance includes a nonnegative dispersion parameter �, so that V ar(Xjn) = n�(1��)(1+

�)�1(1 + n�). A special case of the beta-binomial is the simple binomial, which occurs for

� = 0.

One of the most successful uses of the beta-binomial model is in laboratory studies of

developmental toxicity, where X is the number of fetuses within a litter of size n exhibiting

toxic e�ects after their parents' exposure to some chemical agent (Haseman and Piegorsch,

1994). An important, but oft-overlooked issue in such studies is whether the beta-binomial

adequately represents the extra-binomial variation; i.e., how well does the model �t the

data?

To address this issue, Brooks, Morgan, Ridout, and Pack (1997) { hereafter BMRP {

considered a series of models for overdispersed developmental toxicity data that included

the beta-binomial, but that also allowed for various �nite mixtures of binomials and beta-

binomials. These alternative constructions o�er new insight for modeling overdispersed

proportions. BMRP also proposed a series of useful procedures for testing model �t for this

type of data. In this short note, we center attention on one of these tests: a novel omnibus

goodness-of-�t test for the beta-binomial model that avoids specifying an alternative model

by working with the maximized likelihood itself, rather than with a likelihood ratio.

Speci�cally, BMRP �rst maximized the likelihood under a beta-binomial model, and

then simulated from the �tted beta-binomial distribution conditional on the observed values

of n to determine a null distribution of the maximized likelihood. By implication, they

rejected the beta-binomial model when the observed test statistic fell in either tail of the

2



null distribution. This produced a two-sided test, where a small p-value indicated departure

from beta-binomial variability in the original data.

BMRP applied their omnibus goodness-of-�t test to a succession of six developmental

toxicity data sets whose response proportions were thought to be overdispersed. They

found that the beta-binomial model provided a reasonable �t in all cases. They were able

to show, however, that for �ve of these six data sets, some other model { made up of various

�nite mixtures of binomials and beta-binomials { provided a better �t than the single beta-

binomial. This may lead one to ponder whether their omnibus test statistic lacks the ability

to detect deviations from the beta-binomial in certain instances.

As relates to goodness-of-�t testing for the beta-binomial, we feel that unless one can

identify a priori a speci�c distribution or class of distributions to de�ne the alternative space,

the omnibus alternative is quite the favorable choice, since it gives an absolute criterion

against which to assess the model �t. Selecting a valid test statistic within this context,

however, is not trivial. For instance, likelihood-based tests can become problematic, as we

illustrate with a short example in Section 2. We show that the BMRP maximized likelihood

statistic can lack the ability to detect departure from the beta-binomial, compared to a

Pearson-type chi-squared statistic, even when the data are grossly non-beta-binomial and

the sample size is large. Our point is that while likelihood ratio tests are widely accepted

for a broad variety of testing situations (including cases of testing model adequacy), they

nonetheless require a class of structured or parametric alternatives against which to operate.

When no such class seems suitable, one might be tempted to use the maximized likelihood

under the null hypothesis as a test statistic in its own right, as BMRP did for the beta-

binomial problem. The present discussion is intended to warn against relying on such a

procedure.

2 Example

We consider the performance of both the BMRP test and an alternative Pearson chi-squared

test, on the following arti�cial data. First, �x the constant � 2 (0; 1). The arti�cial data

consist of J litters each of size n = 3, where exactly �J litters have the response X = 0,
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and the remaining (1 � �)J litters have X = 2. We ignore any slight discrepancy arising

from the fact that �J may have to be rounded to the nearest integer, as our calculations

are essentially large-sample approximations (J ! 1) and these will not be a�ected by

rounding error.

This example is unlikely to occur in practice but we are using it to illustrate a general

point: that even for a data set such as this which is obviously not beta-binomial, the

BMRP test may fail to detect that fact (unless J is extremely large). We believe many

other examples could have been constructed to illustrate this point.

Under a beta-binomial model with n = 3, let px(�; �) denote the probability of re-

sponse x, for x = 0; 1; 2; 3, as a function of the parameters � and �. The maximum likeli-

hood estimators (MLEs) in our example are therefore the values of � and � that maximize

� log p0(�; �)+ (1��) log p2(�; �). Since these depend solely on �, we write them as �� and

��. Let f1 = � log p0(��; ��) + (1 � �) log p2(��; ��) and f0 =
P

x
px(��; ��) log px(��; ��).

Then Jf1 is (modulo rounding error) the actual value of the maximized log likelihood test

statistic for our arti�cial data con�guration, and Jf0 is its expected value under the hy-

pothesis H0 that the beta-binomial model with parameters (��; ��) is correct. Also, let

�2 =
P

x
px(��; ��) log

2 px(��; ��)� f2
0
; then J�2 is the variance of the maximized log like-

lihood statistic for a sample of J litters when H0 is correct. For � � 0:25, it can be shown

that �� = 0, so the estimated beta-binomial model is in fact a binomial distribution. In

that case f0, f1, and �2 are de�ned the same way, using the binomial distribution.

Figure 1 plots the values of f0 and f1 across the entire range of �. It can be seen that,

throughout the range 0:25 � � < 1, the two curves are very close to each other, and at two

points (� = 0:25 and � � 0:53) they intersect. Throughout this range, therefore, we might

expect a test based on the maximized likelihood statistic to have di�culty discriminating

our arti�cial con�guration from a beta-binomial distribution.

For large J , the two-sided BMRP test will reject H0, at signi�cance level 0.05, if J(f1�

f0)
2=�2 > (1:96)2, approximately. The sample size J required, to demonstrate that our

arti�cial data set is not beta-binomial, is therefore (1:96)2�2=(f1 � f0)
2. Note that to

determine a p-value, the actual BMRP test compares the maximized likelihood function

of the original data to simulated maximized likelihood functions, which are determined by
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re-estimating � and � from data simulated using the original MLE. Our discussion of their

approach appeals to large-samples, but for large J , the maximized log likelihood statistic

under H0 will have an asymptotic normal distribution, justifying our approximation.

Now for the same arti�cial data, consider an alternative Pearson chi-squared test. For

J litters, the observed frequencies of x = 0; 1; 2; 3 are �J; 0; (1 � �)J; 0. Their expected

values under H0 are Jpx, x = 0; 1; 2; 3. The Pearson test therefore rejects H0 if Jf2 > c,

where f2 = (�� p0)
2=p0 + p1 + (1� �� p2)

2=p2 + p3 and c is the test critical value. In the

calculations to follow, we take c = 7:8147, the upper 5%-point of �2
3
. Therefore, the sample

size J at signi�cance level 0.05 required to detect that the data set is not beta-binomial

is 7:8147=f2. Here again, we have ignored any possible adjustment to c that accounts for

estimating the unknown beta-binomial parameters. For large J , however, the MLEs are

consistent under H0 so the �2
3
approximation for the distribution of the test statistic is

justi�ed.

In Figure 2, we show the critical values of J at signi�cance level 0.05 required to detect

that the arti�cial data set is not beta-binomial, for both tests. For all except very small

�, the sample size required under the BMRP test is larger than that required under the

Pearson test. For most of the range, the di�erence between the two sample sizes is several

orders of magnitude, diverging to in�nity near � = 0:25 or 0.53.

3 Discussion

The short example in Section 2 demonstrates that omnibus likelihood-based tests of �t for

the beta-binomial distribution can be problematic, so caution is advised regarding the use

of such tests. Alternative models can exist whose expected log likelihood does not di�er

greatly from that of the null model. This suggests that there may be cases where the type

of goodness-of-�t test proposed by BMRP is unable to detect non-beta-binomial data.

As we noted above, although we believe that the maximized-likelihood test proposed

by BMRP su�ers from some shortcomings, a number of perfectly sound procedures for

comparing models are included in their article. Moreover, BMRP suggested some useful

alternative mixture models, including mixtures of binomial distributions and mixtures of

5



binomial and beta-binomial distributions. These alternative models add greatly to the scope

of available models for this type of data.

As regards testing �t of the beta-binomial model, the e�ort to develop a good omnibus

test is di�cult, especially when large variation exists in n. If a well-de�ned alternative

model can be postulated, then a likelihood ratio test is appropriate (as was done, in fact,

in the latter portions of the BMRP article), but a likelihood-based approach for omnibus

alternatives seems unreliable. We have considered generalizations of the Pearson chi-squared

test to handle the omnibus setting, and will present those results elsewhere.

We should note in closing that for readers wishing to study the BMRP data sets in more

detail, the tables in BMRP contain some minor typographical errors. In Table 1 the entry

at position (8, 14) should be moved to (9, 14). In Table 2 the entry of \1" should appear

at position (11, 16). In Table 4 the entry at position (9, 10) should be moved to (10, 10).
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Figure 1. The mean values of the negative log likelihood test statistic computed for the

beta-binomial model when the beta-binomial model is true (f0, dashed curve) and when

the alternative model described in Section 2 is true (f1, solid curve), divided by J . The

two curves intersect at � = 0:25 and � � 0:53, and are very close throughout the range

0:25 < � < 1.

7



log J

0.0 0.2 0.4 0.6 0.8 1.0

   1

   2

   3

   4

   5

   6

   7

�

Figure 2. Sample size needed to reject the beta-binomial model when the alternative model

described in Section 2 is true, assuming a 0:05 signi�cance level. Solid curve: likelihood test

proposed by BMRP. Dashed curve: Pearson chi-squared test. The logarithm of the sample

size J is in base 10.
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