
Quantifying Uncertainty in Projections of Regional Climate

Change: A Bayesian Approach to the Analysis of Multi-model

Ensembles

Claudia Tebaldi 1, Richard L. Smith 2 , Doug Nychka3

and Linda O. Mearns3

October 20, 2004

1Project Scientist, National Center for Atmospheric Research, Boulder, CO
2Professor, University of North Carolina, Chapel Hill, NC
3Senior Scientist, National Center for Atmospheric Research, Boulder, CO

0



Abstract

A Bayesian statistical model is proposed that combines information from a multi-model

ensemble of atmosphere-ocean general circulation models and observations to determine

probability distributions of future temperature change on a regional scale. The posterior

distributions derived from the statistical assumptions incorporate the criteria of bias and

convergence in the relative weights implicitly assigned to the ensemble members. This ap-

proach can be considered an extension and elaboration of the Reliability Ensemble Averaging

method. For illustration, we consider output of mean surface temperature from 9 AOGCMs,

run under the A2 SRES scenario, for Boreal winter and summer, aggregated over 22 land

regions and into two 30-year averages representative of current and future climate condi-

tions. The shapes of the final probability density functions of temperature change vary

widely, from unimodal curves for regions where model results agree, or outlying projections

are discounted due to bias, to multimodal curves where models that cannot be discounted on

the basis of bias give diverging projections. Besides the basic statistical model, we consider

including correlation between present and future temperature responses, and test alternative

forms of probability distributions for the model error terms. We suggest that a probabilistic

approach, particularly in the form of a Bayesian model, is a useful platform from which to

synthesize the information from an ensemble of simulations. The probability distributions

of temperature change reveal features such as multi-modality and long tails that could not

otherwise be easily discerned. Furthermore, the Bayesian model can serve as an interdisci-

plinary tool through which climate modelers, climatologists, and statisticians can work more

closely. For example, climate modelers, through their expert judgment, could contribute to

the formulations of prior distributions in the statistical model.

1 Introduction

Numerical experiments based on Atmosphere-Ocean General Circulation Models (AOGCMs) are

one of the primary tools used in deriving projections for future climate change. However, the

strengths and weaknesses that individual AOGCMs display have led authors of model evaluation

studies to state that “no single model can be considered ‘best’ and it is important to utilize results
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from a range of coupled models” (McAvaney et al., 2001). In this paper we propose a probabilistic

approach to the synthesis of climate projections from different AOGCMs, in order to produce

probabilistic forecasts of climate change.

Determining probabilities of future global temperature change has flourished as a research

topic in recent years (Schneider, 2001; Wigley and Raper, 2001; Forest et al., 2002; Allen et

al. 2000). This work has been based for the most part on the analysis of energy balance or

reduced climate system models that facilitate many different model integrations and hence allow

the estimation of a distribution of climate projections. However, the focus on low-dimensional

models prevents a straightforward extension of this work to regional climate change analyses,

which are the indispensable input for impacts research and decision making. In this study we

draw on more conventional AOGCM experiments in order to address specifically regional climate

change. We recognize, though, that probabilistic forecasts at the level of resolution of the typical

AOGCM is a feat of enormous complexity. The high dimensionality of the datasets, the scarcity

of observations in many regions of the globe and the limited length of the observational records

have required ad hoc solutions in detection and attribution studies, and it is hard to structure

a full statistical approach, able to encompass these methods and add the further dimension

of the super-ensemble dataset. At present, we offer a first step towards a formal statistical

treatment of the problem, by examining regionally averaged temperature signals. This way, we

greatly simplify the dimensionality of the problem, while still addressing the need for regionally

differentiated analyses.

1.1 Model bias and model convergence

Recently, Giorgi and Mearns’ Reliability Ensemble Average (REA) method (Giorgi and Mearns,

2002) quantified the two criteria of bias and convergence for multimodel evaluation, and produced

estimates of regional climate change and model reliabilities through a weighted average of the

individual AOGCM results. The REA weights contain a measure of model bias with respect to

current climate and a measure of model convergence, defined as the deviation of the individual
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projection of change with respect to the central tendency of the ensemble. Thus, models with

small bias and whose projections agree with the consensus receive larger weights. Models with

lesser skill in reproducing the observed conditions and appearing as outliers with respect to

the majority of the ensemble members receive less weight. In a subsequent note Nychka and

Tebaldi (2003) show that the REA method is in fact a conventional statistical estimate for the

center of a distribution that departs from a Gaussian shape by having heavier tails. Thus,

although the REA estimates were proposed by Giorgi and Mearns as a reasonable quantification

of heuristic criteria, there exists a formal statistical model that can justify them as an optimal

procedure. The research in this paper is motivated by this statistical insight. Here we start from

the same data used by Giorgi and Mearns, i.e. 30-year regional climate averages representative

of current and future conditions, and propose statistical models that recover the REA framework

but are flexible in the definition of bias and convergence and are easily generalizable to richer data

structures. The main results of our analysis consist of probability distributions of temperature

change at regional scales that reflect a relative weighing of the different AOGCMs according to

the two criteria.

1.2 A Bayesian approach to climate change uncertainty

There is interest in the geosciences in moving from single value predictions to probabilistic

forecasts, in so far as presenting a probability distribution of future climate is a more flexible

quantification for drawing inferences and serving decision making (Reilly et al. 2001; Webster,

2003; Dessai and Hulme, 2003). Bayesian methods are not the only option when the goal is

a probabilistic representation of uncertainty, but are a natural way to do so in the context of

climate change projections.

The choice of prior distributions is crucial, when adopting a Bayesian approach, representing

the step in the analysis more open to subjective evaluations. Within the climate community,

different viewpoints have been expressed regarding the use of expert judgement in quantifying

uncertainty. For example, Wigley and Raper (2001) explicitly chose prior distributions to be
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consistent with their own expert judgement of the uncertainty of key parameters such as cli-

mate sensitivity, and Reilly et al. (2001) argued that such assessments should be part of the

IPCC process for quantifying uncertainty in climate projections. Opposing this view, Allen

et al. (2001) argued that “no method of assigning probabilities to a 100-year climate forecast

is sufficiently widely accepted and documented in the refereed literature to pass the extensive

IPCC review process.” (They suggested that there might be better prospects of success with a

50-year forecast, since over this time frame there is better agreement among models with respect

to both key physical parameters and the sensitivity to different emissions scenarios.) Following

this philosophy, Forest et al. (2002) stated “an objective means of quantifying uncertainty...is

clearly desirable” and argued that this was achievable by choosing parameters “that produce

simulations consistent with 20th-century climate change”. However, their analysis did not use

multi-model ensembles. We view the present approach as an extension of the philosophy re-

flected in the last two quotations, where we adopt uninformative prior distributions but use

both model-generated and observational data to calculate meaningful posterior distributions.

Another point in favor of uninformative prior distributions is that they typically lead to pa-

rameter estimates similar to non-Bayesian approaches such as maximum likelihood. However,

Bayesian methods are more flexible when combining different sources of uncertainty, such as

those derived from present-day and future climate model runs, and we regard this as a practical

justification for adopting a Bayesian approach.

1.3 Outline

Section 2 contains the description of the basic statistical model and its extensions. Prior distri-

butions for the parameters of interest, and distributional assumptions for the data, conditional

on these parameters, are described. We then present analytical approximations to the poste-

rior distribution in order to gain insight into the nature of the statistical model and its results.

In Section 3 the model is applied to the same suite of AOGCM experiments as in Giorgi and

Mearns (2002), and some findings from the posterior distributions are presented. In Section 4 we
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conclude with a discussion of our model assumptions and what we consider promising directions

for extending this work. The Markov chain Monte Carlo (MCMC) method used to estimate the

posterior distributions is described in Appendix 1.

2 Statistical models for AOGCM projections

Adopting the Bayesian viewpoint the uncertain quantities of interest become the parameters

of the statistical model and are treated as random variables. A prior probability distribution

for them is specified independently of the data at hand. The likelihood component of the sta-

tistical model specifies the conditional distribution of the data, given the model parameters.

Through Bayes’ theorem prior and likelihood are combined into the posterior distribution of the

parameters, given the data. Formally, let Θ be the vector of model parameters, and p(Θ) their

prior distribution. The data D, under the assumptions formulated in the statistical model, has

likelihood p(D|Θ). Bayes’ theorem states that

p(Θ|D) ∝ p(Θ) · p(D|Θ),

where p(Θ|D) is the posterior distribution of the parameters and forms the basis of any formal

statistical inference about them.

When the complexity of p(Θ|D) precludes a closed-form solution, which is the case in our

application, an empirical estimate of the posterior distribution can be obtained through Markov

chain Monte Carlo (MCMC) simulation. MCMC techniques are efficient ways of simulating

samples from the posterior distribution, by-passing the need of computing it analytically, and

inference can be drawn through smoothed histograms and numerical summaries based on the

MCMC samples.

2.1 The model for a single region

In this section we present the analytical form of our basic statistical model. We list first the

distributional assumptions for the data (likelihood), then the priors for all the model parameters.
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We then present conditional approximations to the posterior that will help to interpret our

results. Throughout, let Xi and Yi denote the temperature simulated by AOGCM i, seasonally

and regionally averaged and aggregated into two 30-year means representative of current and

future climate, respectively.

Likelihoods

We assume Gaussian distributions for Xi, Yi:

Xi ∼ N(µ, λ−1
i ), (1)

Yi ∼ N(ν, (θλi)−1), (2)

where the notation N(µ, λ−1) indicates a Gaussian distribution with mean µ and variance 1/λ.

Here µ and ν represent the true values of present and future temperature in a specific region and

season. A key parameter of interest will be ∆T ≡ ν −µ, representing the expected temperature

change. The parameter λi, reciprocal of the variance, is referred to as the precision of the

distribution of Xi. To allow for the possibility that Yi has different precision from Xi, we

parameterize its distribution by the product θλi where θ is an additional parameter, common

to all AOGCMs. A more general model might allow for θ to be different in different models, but

that is not possible in the present set up given the limited number of data points.

The assumptions underlying (1) and (2) are that the AOGCM responses have a symmetric

distribution, whose center is the “true value” of temperature, but with an individual variability,

to be regarded as a measure of how well each AOGCM approximates the climate response to

the given set of natural and anthropogenic forcings. The assumption of a symmetric distri-

bution around the true value of temperature for the suite of multi-model responses has been

implicitly supported by CMIP studies (Meehl et al., 2000) where better validation properties

have been demonstrated for the mean of a super-ensemble rather than the individual members.

The additional assumption in our model that the single AOGCM’s realizations are centered

around the true value could be easily modified in the presence of additional data. For exam-

ple, if single-model ensembles were available, then an AOGCM-specific random effect could be

incorporated.
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We model the likelihood of the observations of current climate as

X0 ∼ N(µ, λ0). (3)

Here µ is the same as in (1), but λ0 is of a different nature from λ1, . . . , λ9. While the latter are

measures of model-specific precision, and depend on the numerical approximations, parameter-

izations, grid resolutions of each AOGCM, λ0 is a function of the natural variability specific to

the season, region and time-average applied to the observations. In our model we fix the value of

the parameter λ0, using estimates of regional natural variability from Giorgi and Mearns (2002).

The parameter λ0 could be treated as a random variable as well if our data contained a long

record of observations that we could use for its estimation.

Prior distributions

The model described by (1)-(3) is formulated as a function of the parameters

µ, ν, θ, λ1, . . . , λ9. Following the arguments presented in Section 1.2, we choose uninformative

priors as follows:

1. λi, i = 1, . . . , 9 have Gamma prior densities (indicated by Ga(a, b)), of the form

ba

Γ(a)
λa−1

i exp−bx

with a, b known and chosen so that the distribution will have a large variance over the

positive real line. Similarly, θ ∼ Ga(c, d), with c, d known. These are standard prior

choices for the precision parameters of Gaussian distributions. In particular they are

conjugate, in the sense of having the same general form as the likelihood considered as

a function of λi, thus ensuring the computational tractability of the model. We choose

a = b = c = d = 0.001, that translate into Gamma distributions with mean 1 and variance

1, 000. By being extremely diffuse the distributions have the non-informative quality that

we require in our analysis.

2. True climate means, µ and ν for present and future temperature respectively, have Uniform

prior densities on the real line. Even if these priors are improper (i.e. do not integrate
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to one), the form of the likelihood model ensures that the posterior is a proper density

function. Alternative analyses in which the prior distribution is restricted to a finite, but

sufficiently large, interval, do not in practice produce different results.

Posterior distributions

We apply Bayes’ Theorem to the likelihood and priors specified above. The resulting joint

posterior density for the parameters µ, ν, θ, λ1, . . . , λ9 is given by, up to a normalizing constant,

9∏
i=1

[
λa−1

i e−bλi · λiθ
1/2 exp

{
−λi

2
((Xi − µ)2 + θ(Yi − ν)2)

}]
· θc−1e−dθ · exp

{
−λ0

2
(X0 − µ)2

}
.

(4)

The distribution in equation (4) is not a member of any known parametric family and we cannot

draw inference from its analytical form. The same is true for the marginal posterior distributions

of the individual parameters, that we cannot compute from (4) through closed-form integrals.

Therefore, Markov chain Monte Carlo simulation is used to generate a large number of sample

values from (4) for all parameters, and approximate all the summaries of interest from sample

statistics. We implement the MCMC simulation through a Gibbs sampler, and details of the

algorithm are given in Appendix 1.

Here we gain some insight as to how the posterior distribution synthesizes the data and

the prior assumptions by fixing some groups of parameters and considering the conditional

posterior for the others. For example, the distribution of µ fixing all other parameters is a

Gaussian distribution with mean

µ̃ = (
9∑

i=0

λiXi)/(
9∑

i=0

λi) (5)

and variance (
9∑

i=0

λi

)−1

. (6)

In a similar fashion, the conditional distribution of ν is Gaussian with mean

ν̃ = (
9∑

i=1

λiYi)/(
9∑

i=1

λi) (7)
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and variance (
θ

9∑
i=1

λi

)−1

. (8)

The forms (5) and (7) are analogous to the REA results, being weighted means of the 9

AOGCMs and the observation, with weights λ1, . . . , λ9, λ0, respectively. As in the case of the

REA method, these weights will depend on the data, but a fundamental difference is that in our

analysis they are random quantities, and thus we account for the uncertainty in their estimation.

Such uncertainty will inflate the width of the posterior distributions of ν, µ, and thus also ∆T .

An approximation to the mean of the posterior distribution of the λi’s, for i = 1, . . . , 9, is:

E(λi|{X0, . . . , X9, Y1, . . . , Y9}) ≈
a + 1

b + 1
2((Xi − µ̃)2 + θ(Yi − ν̃)2)

. (9)

The form of (9) shows that the individual weight λi is large provided both |Xi − µ̃| and |Yi − ν̃|

are small. These two quantities correspond to the bias and convergence criteria respectively.

|Yi− ν̃| measures the distance of the ith model future response from the overall average response,

and so has characteristics similar to the convergence measure in Giorgi and Mearns (2002).

The important difference from REA for this model is that the distance is based on the future

projection (Yi) rather than the temperature change (Yi −Xi). As for the bias term, notice that

in the limit, if we let λ0 → ∞ (we model the observation X0 as an extremely precise estimate

of the true temperature µ), µ̃ → X0, and the bias term becomes in the limit |Xi − X0|, the

same definition of bias as in the REA analysis. The form of (9) also reveals how by chosing

a = b = 0.001 we ensure that the contribution of the prior assumption to (9) is negligible.

2.2 Introducing correlation between present and future climate responses

within each AOGCM, and robustifying the model

Although the model presented in Section 2.1 reproduces the basic features of the REA method,

in this section we modify our model in two important directions. First, we relax the assumption

of independence between Xi and Yi, for a given climate model. We do so by linking Xi and

Yi through a linear regression equation; this is equivalent to assuming that (Xi, Yi) are jointly
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normal, given the model parameters, with an unknown correlation coefficient which is left free

to vary, a-priori, between +1 and −1.

Thus, adopting a slightly different notation than in Section 2.1, we express the statistical

assumptions for Xi and Yi as follows. Let

Xi = µ + ηi, (10)

where ηi ∼ N(0, λ−1
i ), making (10) equivalent to (1). Then, given Xi, µ and ν, let

Yi = ν + βx(Xi − µ) + ξi/
√

θ, (11)

where ξi ∼ N(0, λ−1
i ).

In this model we use the priors listed in Section 2.1 for the parameters µ, ν, λ1, . . . , λ9, θ,

and we choose a Uniform prior on the real line for βx.

Through the regression equation (11) βx will introduce a direct (if positive) or inverse (if

negative) relation between Xi−µ and Yi−ν. By using a common parameter we force the sign of

the correlation to be the same for all AOGCMs, a constraint that is required because only two

data points (current and future temperature response) per model are available for a given region

and season. The value of βx has also implications in terms of the correlation between Yi−Xi, the

signal of temperature change produced by the ith AOGCM, and the quantity Xi−µ, the model

bias for current temperature. A value of βx equal to 1 translates into conditional independence

of these two quantities, while values greater than or less than 1 would imply positive or negative

correlation between them. (In the REA analysis, Giorgi and Mearns treat these two quantities as

independent, after computing empirical estimates of their correlations and finding that they are

for the most part low in absolute value and not statistically significant.) But the most important

feature of the model with correlation has to do with the form of the posterior distribution for

the λi parameters. By an approximation similar to what we use in Section 2.1 for the basic

model, we derive that the posterior mean has now the approximate form:

E(λi|{X0, . . . , X9, Y1, . . . , Y9}) ≈
a + 1

b + 1
2((Xi − µ̃)2 + θ(Yi − ν̃ − βx(Xi − µ̃))2)

. (12)
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if βx ≈ 1 the form in (12) uses a convergence term now similar to the REA method’s, measuring

the distance between ∆Ti ≈ Yi −Xi and the consensus estimate of temperature change ν̃ − µ̃.

We will compare the results from the basic model and this modified version, in order to assess

how differently the two definitions of convergence reflect on the final posterior distributions of

regional temperature changes.

A second concern is the sensitivity of our model to outlying data points. This is a consequence

of hypothesizing normal distributions for Xi and Yi, given the model parameters. Traditionally,

robustness is achieved by choosing distributions with heavier tails than the Gaussian’s, and

Student-t distributions with few degrees of freedom are often a convenient choice because of

flexibility (the degrees of freedom parameter allowing to vary the degree of their departure

from the Gaussian) and computational tractability. Thus, we model ηi and ξi in equations (10)

and (11) above as independently distributed according to a Student-t distribution, with φ degrees

of freedom. We perform separate analyses for φ varying in the set {1, 2, 4, 8, 16, 32, 64}, the lower

end of the range being associated with heavier tail distributions, the higher being equivalent to

a Gaussian model. We are not a-priori labeling some of the AOGCMs as outliers, but we

examine the difference in the posterior distributions that ensues as a function of the statistical

model assumed for the error terms. Varying the degrees of freedom can accommodate extreme

projections to a larger or smaller degree and is equivalent to the convergence criterion being

less or more stringent, respectively. This achieves at least qualitatively the same effect as the

exponents in the REA’s weights, by which the relative importance of the bias and convergence

terms could be modified.
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3 The analysis: results from the Markov chain Monte Carlo

simulation

3.1 Data

We analyse temperature responses under the A2 emission scenario (Nakicenovic et al. 2000), just

a portion of the dataset analyzed by the REA method in Giorgi and Mearns (2002). Output from

9 different AOGCMs (see Table 1 and references therein) consists of present and future average

surface temperatures, aggregated over the 22 regions shown in Figure 1, two seasons (DJF and

JJA) and two 30-year periods (1961-1990; 2071-2100). Thus, we will separately treat (Xi, Yi),

i = 1, . . . , 9, for each region and season. Observed temperature means for the 22 regions and the

1961-1990 period (X0) were also taken from Giorgi and Mearns (2002), together with estimates of

regional natural variability, interpretable as the standard deviation of the three-decadal average

that X0 represents. We use these estimates (listed in Table 2) to determine the values of the

parameter λ0. The dataset can be downloaded from www.cgd.ucar.edu/~nychka/REA.

3.2 Results for a group of representative regions

We present posterior distributions derived from the basic model (Section 2.1) and the model

introducing correlation between Xi and Yi (Section 2.2), both models assuming Gaussian distri-

butions for the likelihoods. We choose to focus on a representative group of six regions (Alaska

(ALA), East North America (ENA), Southern South America (SSA), Northern Europe (NEU),

East Africa (EAF), Northern Australia (NAU)), for both winter (DJF) and summer (JJA)

season.

3.2.1 Temperature change

Figures 2 through 4 show posterior distributions of temperature change ∆T ≡ ν − µ in the six

regions, for winter and summer season, for the basic model (solid lines) and for the model with

correlation (dashed lines). For reference, the 9 models’ individual responses Yi−Xi, i = 1, . . . , 9
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are plotted along the x axis (as diamonds), together with Giorgi and Mearns’ REA estimates

of ∆̃T plus or minus 2 standard deviations (as a triangle superimposed on a segment). From

the relative position of the diamonds one can qualitatively assess a measure of convergence for

each model (defined in terms of the individual AOGCMs’ temperature change response), and

discriminate between models that behave as outliers and models that reinforce each other by

predicting similar values of temperature change. The bias measure is not immediately recover-

able from this representation, so we list in table 3 values of the bias for each of the 9 AOGCMs

in the 6 regions, for summer and winter. A comparison of the densities in Figures 2 through 4

with the bias values listed in the table reveals how models having relatively smaller bias receive

relatively larger weight. Models that perform well with respect to both criteria are the ones

where the probability density function is concentrated. The REA results are consistent overall

with mean and range of the dashed curves. For most of the regions (especially in winter) the

solid and dashed lines are in agreement, with the solid lines showing a slightly wider probability

distribution. This is expected because of the introduction, in (11) of the covariate Xi, that has

the effect of making the distribution of Yi more concentrated about ν. As a consequence the

distribution of the difference ν−µ is also tighter. For these region-season combinations, and for

a majority of those not shown, it is the case that the two models, with or without correlation,

result in almost identical posterior distributions of temperature change. They represent cases

in which the 9 AOGCMs maintain the same behavior, when judged in terms of their absolute

projections of future climate, or in terms of their temperature change signals. Those that can

be defined as extreme are so in both respects, those that agree with each other, and form the

consensus, do so in both respects.

For a few region-season combination (we show three representative, EAF, NEU and NAU in

summer) the posterior densities are dramatically different for the two statistical models. This

is consequence of applying two different measures of convergence, and AOGCM results that are

“outliers” with respect to one but are not so with respect to the other. In these instances, it

matters which criteria of convergence we apply, and so the REA method is in agreement only
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with the dashed curves.

Since the introduction of the parameter βx influences heavily the outcome of the analysis,

for some region-season combinations, it deserves a careful consideration. For most of the re-

gions its posterior concentrates to the right of zero, indicating a significant positive correlation

between present and future temperature responses of all AOGCMs. Figure 5 shows the range of

distributions of βx for the six regions and two seasons. It is also interesting to notice that most

of the mass of these posterior densities is concentrated around one, supporting (as explained in

Section 2.2) the REA finding of weak correlation between temperature change signal and bias.

The shapes of the densities in Figure 2 through 4 vary significantly. Regular, unimodal

curves are estimated in regions where there is obvious agreement among models, or where

outlying models are downweighted due to large biases. Multimodal curves characterize regions

where AOGCMs give disparate predictions, none of which can be discounted on the basis of

model bias. These are also most often the cases when the results are sensitive to whether the

basic model or the one with correlation is adopted. The value of presenting results in terms

of a posterior distribution is obvious in the case of multimodal curves. For these densities

the mean and median would not be good summaries of the distribution. Although we do

not necessarily see these multimodal results as having an obvious physical interpretation, they

definitely highlight the problematic nature of predictions in specific areas of the globe. For

these regions our analysis gives more insight than traditional measures of central tendency

and confidence intervals, and considering the sensitivity of the results to the statistical model

assumptions is extremely relevant.

3.2.2 Precision parameters

Figures 6 and 7 summarize the posterior distributions for the precision parameters λi, in the

form of boxplots (shown on a logarithmic scale, because of their high degree of skeweness). In

our analysis λi’s are the analogue to the model weights in REA’s final estimates. However,

λi is for us a random variable, and the scoring of the 9 AOGCMs should here be assessed
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through the relative position of the 9 boxplots, rather than by comparing point estimates.

Comparing these distributions across models for a single region and season may suggest an

ordering of the 9 AOGCMs: large λi’s indicate that the distribution of the AOGCM response

is more tightly concentrated around the true climate response. Thus, posterior distributions

that are relatively shifted to the right indicate better performance by the AOGCM associated

to it than distributions shifted to the left. However, the large overlap among these distributions

indicates that there is substantial uncertainty in the relative weighing of the models and cautions

against placing too much faith in their ranking. Substantiating further this finding, we have

calculated the posterior mean for each λi and standardized them to percentages. They are listed

in Table 4 and 5, in the rows labeled as λi/
∑

λi(%). The tables show clearly that the 9 AOGCMs

are weighted differently in different regions, and seasons. This suggests differential skill in

reproducing regional present day climate and a different degree of consensus among models

for different regional signals of temperature change, again pointing to the need of evaluating

an AOGCM over a collection of regions and types of climate, before placing too much or too

little confidence in it. In this perspective, then, Table 6 presents our summary measure of the

9 models’ relative weighting, by listing the median rank of each model over the 22 regions,

separately for the winter and summer seasons. This ranking is also in the same spirit as the

overall reliability index produced by REA. (All the results presented here are from the model

with correlation, where the posterior means of the λi parameters have closer resemblance to the

REA weights.)

3.2.3 Inflation/deflation parameter

The parameter θ represents the inflation/deflation factor in the AOGCMs’ precision when com-

paring simulations of present-day to future climate. When adopting the model with correlation

the posterior for θ is always concentrated over a range of values greater than one, as a consequence

of the tightening effect of the form (11) described earlier. As for the posterior distributions de-

rived from the basic model, we present them for each of the six regions in Figure 8, in the form of
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boxplots. For some of the regions the range is concentrated over values less than one, suggesting

a deterioration in the precision of the 9 AOGCMs. Figure 8 indicates that each region tells a

different story, and so does each season. For East North America, the simulations (i.e., their

agreement) deteriorate in the future, and this holds true for both seasons. For Northern Aus-

tralia, especially in the summer, and for Southern South America in both seasons the contrary

appears to be true. For Alaska the behavior is different in winter (where a loss of precision is

indicated) than in summer. For the two other regions, East Africa and Northern Europe, the

inference is not as clear cut. We cannot offer any insight into the reason why this is so, our

expectation being that the projections in the future, in the absence of the regression structure

(11), would be at least as variable around the central mean as the current temperatures simula-

tions are, likely more so. Considering in detail the properties of the AOGCMs for these regions

may help to interpret these statistical results. However, we point out that the assumption of a

common parameter for all AOGCMs may be too strict, and these results may change if a richer

dataset, with single-model ensembles, allowed us to estimate model-specific θ factors.

3.2.4 Introducing heavy-tail distributions

We estimated alternative statistical models, with heavier tail characteristics, by adopting Student-

t distributions for Xi and Yi, as explained in Section 2.2.

Different values of degrees of freedom (φ in the notation of Section 2.2) were tested, from

1 (corresponding to heavy-tail distributions, more accommodating of outliers) to 64 (corre-

sponding to a distribution that is nearly indistinguishable from a Gaussian). By comparing the

posterior densities so derived, we can assess how robust the final results are to varying statistical

assumptions. It is the case for all regions that the overall range and shape of the temperature

change distributions are insensitive to the degrees of freedom, and this holds true when testing

either the basic model, or the model with correlation. Only for a small number of regions do

1/2 degrees of freedom produce posterior distributions of climate change that spread their mass

towards the more isolated values among the 9 AOGCM responses. The difference from the basic

16



Gaussian model is hardly detectable in a graph comparing the posterior densities from different

model formulations. We conclude that the posterior estimates are not substantially affected by

the distributional assumptions on the tails for Xi and Yi.

4 Discussion, extensions and conclusions

4.1 Overview of temperature change distributions

Figure 9 and 10 look at differences in the estimates of temperature change and uncertainty among

regions, in the form of a series of boxplots, sorted by their median values. This representation

is useful for assessing different magnitudes of warming, and different degrees of uncertainty

(variability) across regions and between seasons. Notice that all distributions are limited to the

positive range, making the case for global warming. Warming in winter is on average higher than

in summer, for all regions, and high latitudes of the northern hemisphere are the regions with

a more pronounced winter climate change. These all are by now undisputed results from many

different studies of climate change (Cubasch et al. 2001). The variability of the distributions is

widely different among regions, supporting the notion that for some regions the signal of climate

change is stronger and less uncertain than for others. Regions such as East North America

(ENA), Southern South America (SSA), Eastern Asia (EAS), Mediterranean (MED) in winter,

West Africa (WAF), Southern Australia (SAU) in summer show extremely tight distributions,

predicting the number of degrees of warming with relative certainty. On the other hand, regions

like Northern Asia (NAS) and Central Asia (CAS), in winter, East Africa (EAF) and West

North America (WNA) in summer and Amazons (AMZ), Central North America (CNA) and

Northern Europe (NEU) in both seasons show a wide range of uncertainty in the degrees of

warming. As we already mentioned, the width and shape of these distributions may be taken

as a signal of the degree of agreement among AOGCMs over the temperature projection in the

regions. Problematic regions, characterized by multimodal or simply diffuse distributions may

suggest areas that merit special attention by the climate modeling community.
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4.2 Advantages of a Bayesian approach

Recent work (Raisanen and Palmer, 2001; Giorgi and Mearns, 2003) has addressed the need for

probability forecasts, but offered only an assessment of the probability of exceeding thresholds,

identified as the (weighted) fraction of the ensemble members for which the thresholds in question

were exceeded. Moreover, in the case where each ensemble member is equally weighted, issues

of model validation are ignored. A differential weighting of the members on the basis of the

REA method is more appropriate but depends on a subjective formulation that is difficult to

evaluate. In contrast, we think that the Bayesian approach is not only flexible but facilitates an

open debate on the assumptions that generate probabilistic forecasts.

The results in this paper demonstrate how the quantitative information from a multi-model

experiment can be organized in a coherent statistical framework based on a limited number of

explicit assumptions. Our Bayesian analysis yields posterior probability distributions of all the

uncertain quantities of interest. These posterior distributions for regional temperature change

and for a suite of other parameters provide a wealth of information about AOGCM reliability

and temporal (present to future) correlations. We deem this distributional representation more

useful than a point estimate with error bars, because important features such as multi-modality

or long tails become evident. Also, the uncertainty quantified by the posterior distributions is an

important product of this analysis and it is not easily recovered using non-Bayesian methods. We

note here that the width of the posterior distributions is also a reflection of the limited number

of datapoints that we used in estimating the parameters of the statistical model, particularly for

the AOGCM-specific parameters λ1, . . . , λ9. Conversely, it is worth underlining that even if we

start from extremely diffuse priors, we are able to estimate informative posterior distributions

for all parameters.

4.3 Sensitivity analysis of the statistical assumptions

The posterior distributions of regional temperature change in many region-season combinations

may differ both in variance and shape, depending on the statistical model adopted, i.e., when
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introducing the correlation structure between present and future model projections. These sen-

sitivities suggest the need to enrich the experimental setting, thus formulating the statistical

model as free as possible from constraints. For example, imposing a common correlation param-

eter βx among models is a strong assumption that could be relaxed if more information were

available. Similarly, single model ensembles would make it possible to estimate the internal

variability of the AOGCM and allows for the separation of intra-model versus inter-model vari-

ability. In addition, climatological information could be incorporated into the prior. The range

of our posteriors for the present and future temperature means would remain the same in the

presence of proper, but still uninformative priors (i.e. either Uniform distributions limited to

a physically reasonable range, or Gaussian distributions concentrating most of their mass over

such ranges). However, a modeling group may have confidence that results in a particular region

are positively biased, or relatively more accurate than in other regions, on the basis of separate

experiments. This kind of information could be applied to the formulation of a different prior

assumption for that AOGCM’s precision parameter. In our opinion, analyzing the robustness

of results to model assumptions is as valuable as analysis of the results themselves, highlighting

the weak parts of the statistical formulation, and pointing to the need of closer communication

between modelers, climatologists and statisticians in order to circumscribe the range of sensible

assumptions. In this regard the Bayesian model presented here may be viewed as a device to

foster more effective collaborations.

A natural extension to the current region-specific model is a model that introduces AOGCM-

specific correlation between regions and thus borrows strength from all the regional tempera-

ture signals in order to estimate model variability and biases. As we discussed in Section 1,

working with higher resolution AOGCM output, both spatially and temporally, will require a

much more complex effort. Richer information on AOGCM performance as linked to specific

regional/seasonal climate reproductions will have to be incorporated in the likelihood of the

AOGCM’s responses and/or the priors on the precision parameters. In addition, other climate

responses may be considered, jointly with temperature. Precipitation is of course the obvious
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candidate, and a bivariate distribution of temperature and precipitation is a natural extension.

4.4 About reliability criteria and statistical modeling

The criteria of bias and convergence established by Giorgi and Mearns (2002, 2003) and adopted

in this work are commonly discussed in the climate change literature as relevant to evaluating

climate change projections. However, one can question whether these two criteria are the most

relevant for evaluating the reliability of projections of climate change. The ability of a model to

reproduce the current climate is usually regarded as a necessary, but not sufficient condition for

considering the model’s response to future forcings as reliable (McAveny et al.,2001). The con-

vergence criterion has been advocated by some authors (Raisanen, 1997, Giorgi and Francisco,

2000) and can be theoretically derived by assuming that the observed AOGCMs represent a

random sample from a superpopulation of AOGCMs. A pitfall in applying model convergence is

that models may produce similar responses due to similarities in model structures, not because

the models are converging on the ’true’ response. Furthermore, one may argue that extreme

projections could be the result of a model incorporating essential feedback mechanisms that

the majority of other models ignore. Yet, agreement among many models has been viewed as

strengthening the likelihood of climate change (Cubasch et al., 2001; Giorgi et al., 2001a,b). As

we noted in Section 2.2 both the form of the REA weights (with the use of two different expo-

nents for the bias and convergence terms) and the specification of the likelihood in our statistical

model allow the final result to depend to a lesser degree on the convergence criterion. Besides

changing the likelihood assumptions one could impose a prior distribution for the θ parameter

that concentrates most of its mass on values less than one. In this way, one posits a lower level

of confidence in the precision of the future simulation than of the present, implicitly accepting

a less stringent criterion of convergence for the future trajectories. The form of (9) shows that

a value of θ less than one would downweight large deviations in the convergence term (Yi− ν)2,

thus achieving a similar effect to the exponent in the REA weight.

From a more general perspective, however, our goal was to extend the REA method, not
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to reevaluate its criteria. It is expected that other criteria, and more complex combinations of

criteria will evolve over time as this statistical work is refined. Much work is being devoted

to more sophisticated and extensive methods of model performance evaluation and inter-model

comparison (Hegerl et al. 2000, Meehl et al. 2000) and future analyses may modify or extend

the two criteria of bias and convergence to account for them.

In conclusion we view our results as an illustration of the power of bringing statistical mod-

eling to experiments where quantifying uncertainty is an intrinsic concern. Moreover we hope

this work may foster more deliberate analysis that incorporates scientific knowledge of climate

modeling at global and regional scales.
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Appendix 1: Prior-posterior update through Markov chain Monte

Carlo simulation

The joint posterior distributions derived from the models in Section 2 are not members of any

known parametric family. However, the distributional forms (Gaussian, Uniform and Gamma)

chosen for the likelihoods and priors are conjugate, thus allowing for closed-form derivation of all

full conditional distributions (the distributions of each parameter, as a function of the remaining

parameters assuming fixed deterministic values). We list here such distributions, for the robust

model that includes correlation between Xi and Yi in the form of regression equation (11). The
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variables si, ti i = 1, . . . 9 are introduced here as an auxiliary randomization device, in order

to efficiently simulate from Student-t distributions within the Gibbs sampler. They are not

essential parts of the statistical model. Fixing si = ti = 1, βx = 0 allows the recovery of the full

conditionals for λ1, . . . , λ9, µ, ν and θ of the basic univariate model as a special case.

λi| . . . ∼ Ga
(

a + 1, b +
si

2
(Xi − µ)2 +

θti
2
{Yi − ν − βx(Xi − µ)}2

)
, (13)

si| . . . ∼ Ga

(
φ + 1

2
,
φ + λi(Xi − µ)2

2

)
, (14)

ti| . . . ∼ Ga

(
φ + 1

2
,
φ + θλi{Yi − ν − βx(Xi − µ)}2

2

)
, (15)

µ| . . . ∼ N

(
µ̃,
(∑

siλi + θβ2
x

∑
tiλi + λ0

)−1
)

, (16)

ν| . . . ∼ N

(
ν̃,
(
θ
∑

tiλi

)−1
)

, (17)

βx| . . . ∼ N

(
β̃x,

(
θ
∑

tiλi(Xi − µ)2
)−1

)
, (18)

θ| . . . ∼ Ga
(

c +
N

2
, d +

1
2

∑
tiλi{Yi − ν − βx(Xi − µ)}2

)
. (19)

Above, we have used the following shorthand notation:

µ̃ =
∑

siλiXi − θβx
∑

λiti(Yi − ν − βxXi) + λ0X0∑
siλi + θβ2

x

∑
λiti + λ0

, (20)

ν̃ =
∑

tiλi{Yi − βx(Xi − µ)∑
tiλi

, (21)

β̃x =
∑

tiλi(Yi − ν)(Xi − µ)∑
tiλi(Xi − µ)2

. (22)

The Gibbs sampler can be easily coded so as to simulate iteratively from this sequence of

full conditional distributions. After a series of random drawings during which the Markov Chain

process forgets about the arbitrary set of initial values for the parameters (the burn-in period),

the values sampled at each iteration represent a draw from the joint posterior distribution of

interest, and any summary statistic can be computed to a degree of approximation that is direct

function of the number of sampled values available, and inverse function of the correlation

between successive samples. In order to minimize the latter, we save only one iteration result

every 50, after running the sampler for a total of 500, 000 iterations, and discarding the first
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half as a burn-in period. These many iterations are probably not needed for this particular

application but by providing them we are eliminating any possibility of bias resulting from too

few MCMC iterations. The convergence of the Markov chain to its stationary distribution (the

joint posterior of interest) is verified by standard diagnostic tools (Best et al. 1995). A self

contained version of the MCMC algorithm, implemented in the free software package R (R

development core team, 2004), is available at www.cgd.ucar.edu/~nychka/REA.
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Figure 1: The 22 regions into which the land masses were discretized for both the REA analysis

and our analysis.
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Figure 2: Posterior distributions of ∆T ≡ ν−µ for two of the six chosen regions, for winter (DJF,

left hand panels) and summer (JJA, right hand panels) season. Solid lines: basic model. Dashed

lines: model with correlation between Xi and Yi. The points along the base of the densities

mark the 9 AOGCMs temperature change predictions. The triangle and segment indicate the

REA estimate of mean change plus/minus a measure of natural variability. The two numbers in

the upper right corner of each plot are the limits of the 95% posterior probability region for βx.
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Figure 3: Posterior distributions of ∆T ≡ ν−µ for two of the six chosen regions, for winter (DJF,

left hand panels) and summer (JJA, right hand panels) season. Solid lines: basic model. Dashed

lines: model with correlation between Xi and Yi. The points along the base of the densities

mark the 9 AOGCMs temperature change predictions. The triangle and segment indicate the

REA estimate of mean change plus/minus a measure of natural variability. The two numbers in

the upper right corner of each plot are the limits of the 95% posterior probability region for βx.
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Figure 4: Posterior distributions of ∆T ≡ ν−µ for two of the six chosen regions, for winter (DJF,

left hand panels) and summer (JJA, right hand panels) season. Solid lines: basic model. Dashed

lines: model with correlation between Xi and Yi. The points along the base of the densities

mark the 9 AOGCMs temperature change predictions. The triangle and segment indicate the

REA estimate of mean change plus/minus a measure of natural variability. The two numbers in

the upper right corner of each plot are the limits of the 95% posterior probability region for βx.
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season. For reference, we draw a vertical line at zero – useful to assess the significance of the

parameter magnitude – and a vertical line at one – to assess the consistence of our results to

the REA analysis’ assumption of independence between Yi −Xi and Xi − µ.
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Figure 6: Posterior distributions of λi, the model-specific precision parameter, for six chosen

regions, for winter season.
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Figure 7: Posterior distributions of λi, the model-specific precision parameter, for six chosen

regions, for summer season.



Figure 8: Posterior distributions of θ, the inflation/deflation factor for the precision parameters

when simulating future climate, common to all 9 AOGCMs, for six chosen regions, for winter

and summer season.
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Figure 9: Posterior distributions of ∆T ≡ ν − µ for all 22 regions, for winter season.
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Figure 10: Posterior distributions of ∆T ≡ ν − µ for all 22 regions for summer season.



Table 1: The 9 Atmosphere-Ocean General Circulation Models whose output constitutes the
data in our analysis.

AOGCM reference climate sensitivity
CCSR-NIES/version 2 Emori et al. (1999) 4.53
MRI/version 2 Noda et al. (1999) 1.25
CCC/GCM2 Flato and Boer (2001) 3.59
CSIRO/Mk2 Gordon and O’Farrell (1997) 3.50
NCAR/CSM Dai et al. (2001) 2.29
DOE-NCAR/PCM Washington et al. (2000) 2.35
GFDL/R30-c Knutson et al. (1999) 2.87
MPI-DMI/ECHAM4-OPYC Stendel et al. (2000) 3.11
UKMO/HADCM3 Gordon et al. (2000) 3.38



Table 2: Natural variability (degrees C) of observed temperature. These are taken from Giorgi
and Mearns (2002). They were estimated by computing 30-year moving averages of observed,
detrended, regional mean temperatures over the 20th century and taking the difference between
maximum and minimum values.

region DJF JJA
NAU 0.40 0.50
SAU 0.50 0.25
AMZ 0.30 0.25
SSA 0.35 0.75
CAM 0.65 0.35
WNA 0.75 0.50
CNA 1.40 0.92
ENA 1.30 0.80
ALA 1.75 0.80
GRL 0.85 0.50
MED 0.40 0.60
NEU 1.00 0.90
WAF 0.45 0.50
EAF 0.42 0.50
SAF 0.40 0.50
SAH 0.45 0.75
SEA 0.40 0.25
EAS 0.85 0.75
SAS 0.40 0.25
CAS 1.00 0.75
TIB 0.85 0.75
NAS 1.00 0.70



Table 3: Model bias, for the 9 AOGCMs temperature response in the 6 regions in winter (DJF)
and summer (JJA). Biases are computed as the deviation of the single AOGCM’s response, Xi,
from the mean of the posterior distribution for µ derived by our analysis.

CCC CSIRO CSM DMI GFDL MRI NIES PCM HADCM
ALA, DJF −0.23 5.83 2.95 0.98 4.29 11.88 2.15 −2.40 −2.62
ALA, JJA 0.50 1.37 −3.57 −0.32 2.26 1.82 0.57 −4.83 −0.64
ENA, DJF 1.15 −1.37 0.18 3.03 −0.17 4.44 −1.32 −1.56 0.10
ENA, JJA −1.03 1.21 −2.48 1.04 7.26 8.31 1.16 −1.01 −0.62
SSA, DJF −0.00 0.69 −1.82 3.16 3.46 4.85 −1.20 −0.97 0.09
SSA, JJA −1.03 −0.48 −0.98 0.72 0.74 1.28 −0.39 −1.74 −2.01
NEU, DJF 0.47 0.34 −1.43 0.30 −1.04 0.57 −6.30 0.03 −3.25
NEU, JJA 0.10 2.18 −3.65 1.05 3.52 5.96 −0.63 −2.38 −0.83
EAF, DJF −4.76 −1.06 −1.39 0.91 0.30 1.70 −0.28 −1.90 0.10
EAF, JJA −3.21 −1.58 −2.49 1.12 −1.48 0.57 −1.29 −3.49 −0.05
NAU, DJF −1.31 −1.58 −1.16 2.17 0.23 3.32 0.60 −2.05 −0.71
NAU, JJA −3.31 −3.04 −5.15 1.62 −1.70 1.57 −0.95 −5.58 −2.15



Table 4: Relative weighting of the 9 AOGCMs across six regions chosen as examples. The
values are computed as 100 × (λ∗i /

∑9
i=1 λ∗i ), where the 9 λ∗i ’s are the means of the posterior

distributions derived by MCMC simulation. Winter temperature change analysis.

CCC CSIRO CSM DMI GFDL MRI NIES PCM HADCM
ALA: 63.80 0.19 0.19 21.71 0.35 0.03 0.04 12.28 1.40
ENA: 2.84 0.74 2.99 0.34 42.26 0.11 0.24 0.75 49.73
SSA: 36.08 4.40 0.13 0.30 0.26 0.13 3.20 0.22 55.28
NEU: 28.21 30.93 3.08 8.71 3.46 2.15 0.05 23.12 0.29
EAF: 0.17 10.50 2.60 3.17 11.29 0.39 65.49 1.58 4.82
NAU: 4.81 2.96 2.09 1.29 66.55 0.29 13.18 0.86 7.97

Table 5: As in Table 4, but for summer temperature change analysis.

CCC CSIRO CSM DMI GFDL MRI NIES PCM HADCM
ALA: 34.88 3.12 0.34 34.41 0.33 0.21 4.59 0.22 21.91
ENA: 14.07 34.38 0.58 43.57 0.08 0.04 0.22 1.78 5.27
SSA: 12.35 47.90 0.85 5.87 6.69 1.03 23.21 0.80 1.29
NEU: 40.50 2.92 0.39 43.88 0.69 0.16 1.09 0.70 9.67
EAF: 0.84 7.93 1.03 7.98 9.52 0.94 1.98 0.70 69.08
NAU: 4.59 5.67 1.72 31.09 15.68 2.04 29.30 1.23 8.67



Table 6: Median rank for each model over the 22 regions, for winter and summer temperature
change predictions. For each region and season the models were ranked from first (1) to last (9)
on the basis of the sorted values (from largest to smallest) of the posterior means of λi, i = 1, ...9.
Then, the median value of the ranking for each model over the 22 regions was computed. As an
example, if the median rank for model i is k, model i was ranked kth or better in at least half
the regions.

season CCC CSIRO CSM DMI GFDL MRI NIES PCM HADCM
DJF 6.5 5.0 5.0 5.0 3.0 9.0 6.0 5.0 3.0
JJA 3.5 3.0 6.0 3.0 6.0 9.0 5.0 6.5 3.0


