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1 Introduction

This paper has been prepared as part of the public commentary process on the

second external review draft of the Particulate Matter Criteria Document (EPA,

2001). The Criteria Document was made available for public review on April 11,

2001, and there is a 90-day period during which anyone can submit comments

on it. The Criteria Document is an important part of the regulatory process

which will lead to the establishment of a new particulate matter standard, and

is supposed to represent an impartial review of the scienti�c literature. Most of

our comments concern Chapter 6, \Epidemiology of Human Health E�ects from

Ambient Particulate Matter", though they are also relevant to Chapter 9,\Inte-

grative Synthesis...", to the extent that the latter chapter draws on material in

the former. Where possible, we have tried to refer to speci�c passages or pages

in the Criteria Document, though our most serious reservations do not concern

the way the document has treated individual papers that it has reviewed, so

much as the overall approach that it has taken. Most of the published studies

in this �eld of research have demonstrated a positive association between in-

creased levels of particulate air pollution and adverse human health outcomes

(mortality and morbidity). However, there are many questions of scienti�c in-

terpretation that must be addressed before these studies can reasonably be said

to justify tightened standards and increased regulation of ambient particulate

matter. Many of these scienti�c interpretation issues are of a statistical nature.
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In other words, they concern matters such as the design of a sampling scheme,

the choice among di�erent methods of statistical analysis, and the statistical

interpretation of the results of an analysis. In general, we �nd that throughout

Chapter 6, these statistical issues have been dealt with very poorly or ignored

altogether. Nevertheless, there are by now a substantial number of papers in

the published, refereed scienti�c literature that address statistical issues asso-

ciated with particulate matter epidemiology. Some of these papers have been

omitted entirely from the review, while others that are included in the Criteria

Document have only been dealt with cursorily or in a manner that ignores their

statistical content.

The remainder of this discussion is set out as follows. Sections 2 and 3 are

primarily intended to �ll in gaps in the CD. Section 2 reviews a special issue

of the statistical journal Environmetrics on statistical analysis of particulate

matter air pollution data. For some reason this special issue, the production

of which was part of an EPA-funded e�ort to assess statistical aspects of the

PM question, has been left out of the document. The very brief Section 3

aims to clarify some points concerning one of our papers which is described in

the CD. These two sections are largely intended to �ll in gaps in the current

CD. Section 4 is a much broader review of one of the main methodological

techniques used in the current PM literature, time series analyses of ambient

PM exposure against either mortality or morbidity outcomes (the present review

is primarily concerned with mortality studies). In this, we review a number of

the methodogical issues raised by these analyses, including the combination of

data from di�erent cities (the main purpose of the NMMAPS study), publication

bias, the e�ects of model selection, non-linear dose-response relationships and

co-pollutants. Section 5 is a similar review for the other main form of research

in this �eld, cohort studies of long-term e�ect. Finally, Section 6 summarizes

our conclusions. Overall, we believe that for both the time series analyses and

the cohort studies, the PM Criteria Document has failed to perform a remotely

adequate job of summarizing the available literature in a manner that would

allow true appreciation of the complex issues that these studies raise.

2 Environmetrics special issue

A special issue of the environmental statistics journal Environmetrics (vol. 11,

Number 6, November/December 2000) was dedicated to statistical aspects of

PM air pollution. Although substantial e�orts were made to assure that these

articles were made available to the PM CD sta� in time for the original June

deadline, and the issue appeared before the end of the year, these papers have

not been taken into account in the CD. We describe the papers in the volume

brie
y below.
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2.1 Sun et al. (2000)

The authors set forth a spatio-temporal model for daily PM10 in the Greater

Vancouver area in British Columbia. The temporal structure is described by

a single autoregressive model of order 1 for all stations. There is no evidence

of leakage of correlation from space to time, i.e., the spatial correlation of the

raw data and that of the residuals from the time series model are roughly the

same. This is in contradistinction to the case of hourly data, where this type

of leakage is serious. The spatial correlation by itself is, however, found to

be heterogeneous. The resulting model is used for Bayesian prediction of the

underlying PM10 �eld in a dense grid of points. The authors point out that the

common assumption of spatial stationarity (or homogeneity) is violated in this

case, as is quite common in environmental applications.

Interpolation of PM10 �elds between monitoring stations is of potential im-

portance in assessing the overall societal impact of new air pollution standards.

In this paper, the proposed methodology performed well when evaluated using

cross-validation, and this to some extent justi�ed the rather complex approach

taken (involving a heterogeneous model and hierarchical structure for the spatial

dependence, in contrast to a simple geostatistical approach such as kriging). On

the other hand, they noted some caveats in their approach, for example, that

the interpolated spatial surfaces are very irregular (which complicates the inter-

pretation) and that the model does not seem to do so well in predicting extreme

levels of PM10.

2.2 Dewanji and Moolgavkar (2000)

A point process model for recurrent events is applied to hospital admissions for

chronic respiratory disease in King County, Washington, over the years 1990-

1995. These data have also been analyzed by Moolgavkar et al. (2000). The

analysis uses di�erent temporal strati�cations (varying from no strati�cation

to half months), as well as pollution data on PM10, CO and very �ne parti-

cles (nephelometry). Temperature was taken into account either using a linear

model or a cubic polynomial. All the pollutants are associated with hospital

admissions. The e�ect of PM is stronger than that of CO in multi-pollutant

models, in contrast to the previous analysis by Moolgavkar (2000). The e�ect

of temporal strati�cation, even fairly coarse, is substantial, and decreases the

e�ect estimates compared to those from the non-strati�ed model.

2.3 Lumley and Levy (2000)

The case-crossover design, which is commonly used in air pollution health e�ect

studies, relies on a strong temporal stationarity assumption. This can be elimi-

nated by using short enough time-frames. The standard analysis, namely condi-

tional logistic regression models as in case-control studies, produces a persistent
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bias, which is due to a false analogy between the two designs. There are sev-

eral reasons for this: in case-crossover studies the exposures are autocorrelated

over time, while in a matched case-control study the exposures are independent.

Two cases that occur on the same day will have the same (or very similar) ex-

posure measures in case-crossover studies, while this constraint between strata

does not occur in case-control studies. Finally, in a matched case-control study

the strati�cation depends only on covariates and not on the response, while in

a case-crossover study the strati�cation depends on the response. A simulation

study indicated that for data similar to Seattle air pollution data, the degree

of bias in this case was not much larger than the �nite-sample bias. However,

adjustment for meteorological factors or co-pollutants may introduce additional

bias.

2.4 Lumley and Sheppard (2000)

The e�ect of selecting lags on the resulting model for particulate matter health

e�ects is one of the main issues in model selection. Using simulated data with

parameters similar to a Seattle PM2:5 series, the bias resulting from the selection

is shown to be similar in size to the relative risk estimates from the measured

data. More precisely, the log relative risk from the measured Seattle data is

about twice the mean bias in the simulated control data, and the published

estimate of relative risk is only at the 90th percentile of the bias distribution in

these control analyses. The selection rule used was to choose the lag (between 0

and 6) with the largest estimated relative risk. In comparisons to real data from

Seattle for other years, and from Portland, OR, with similar weather patterns

to Seattle, similar bias issues appeared.

2.5 Smith et al. (2000b)

Many ad hoc decisions go into model selection in air pollution health e�ects

studies. The e�ect of some of these decisions on relative risk estimates for Birm-

ingham, AL, PM10 data, previously analyzed by Schwartz (1993) and others,

is illustrated. The response variable is non-accidental mortality. Speci�cally,

the selection of meteorological variables, the selection of an exposure variable

(as a weighted average of lagged PM values), and the possibility of nonlinear

e�ects, such as threshold e�ects, are investigated. The results are sensitive to

the inclusion of humidity in addition to temperature. This inclusion decreases

the resulting PM10 coeÆcient. The model is highly sensitive to the de�nition of

an exposure measure. For example, when lags 0-4 were averaged, there was no

signi�cant e�ect. In an attempt to account for a nonlinear PM-mortality e�ect,

there appeared to be little e�ect of exposure below 80 �g/m3, and a threshold

analysis (as well as a generalized additive models approach) supported the con-

clusion that the main e�ect is at higher values of PM. Although this paper was

based on an intensive analysis of a single data set (in contrast to other studies,
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such as the NMMAPS analysis discussed in Section 4.1 below, which combined

data from many cities), it demonstrated the very wide range of interpretations

that are possible using alternative, but statistically valid, analyses of the same

data.

2.6 Clyde (2000)

A more systematic analysis of model choice is obtained using Bayesian Model

Averaging. The same Birmingham, AL, data as analyzed by Smith et al.

(2000b) were used. Several di�erent calibrated information criterion priors were

tried, in which models with large numbers of parameters are penalized to vari-

ous degrees. After taking out a baseline trend (estimated using a GLM estimate

with a 30-knot thin-plate smoothing spline), 7860 models were selected for use

in model averaging. These included lags 0-3 of a daily monitor PM10, an area-

wide average PM10 value with the same lags, temperature (daily extremes and

average) lagged 0-2 days, humidity (dew point, relative humidity min and max,

average speci�c humidity) lagged 0-2 days, and atmospheric pressure, lagged 0-2

days. The model choice is sensitive to the speci�cation of calibrated information

criterion priors, in particular disagreeing as to whether di�erent PM10 variables

should be included or not. For example, some PM10 variable is included in all

the top 25 AIC models, but only in about one third of the top BIC models.

Both approaches give a relative risk estimate of about 1.05 (to be compared to

Schwartz value of 1.11 for a 100 �g/m3 increase), with credibility intervals of

(0.94,1.17) for the AIC prior and (0.99,1.11) for the BIC prior. A validation

study in which left out data were predicted using the di�erent priors favored

Bayesian model averaging with BIC prior over model selection (picking the best

model) with BIC or any approach with AIC.

2.7 Remaining papers

The three remaining papers in this volume are Cox (2000), Phelan (2000) and

Sheppard and Damian (2000). The paper by Cox is a summary of presenta-

tions and discussions at the PM workshop at the National Research Center for

Statistics and the Environment at the University of Washington in Autumn of

1998. Phelan outlines a stochastic process approach to cost-bene�t analysis of

air pollution regulation, and Sheppard and Damian present a methodological

approach to combining ecological and individual-level data in the analysis of air

pollution

3 Two points of clari�cation about Phoenix

The CD refers at a number of places to two papers of ours based on data from

Phoenix, AZ. We would like to clarify some issues related to the paper Smith
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et al. (2000).

The reference to this paper in Table 6-1 (page 6-23) notes the absence of a

speci�c estimate for the �ne and coarse particles e�ects. The estimates are as

follows (for the same analyses as those actually reported in the paper). Trans-

lated into a relative risk for a 25 �g/m3 increase of either �ne (PM2:5) or coarse

(PM10�2:5) particles, the RR for coarse particles is 1.046 (i.e. 4.6% increase in

mortality) with 95% CI (1.019,1.074). The corresponding results for �ne parti-

cles are 0.993 (0.885, 1.109). As noted in the paper, the results are for di�erent

populations, city mortality data being used for the �ne particles analysis and

region-wide data for coarse particles. These numbers may also make it possible

to compare the results of the paper with others depicted in Fig. 6-4, page 6-53.

Table 6-2 on page 6-51 also notes the absence from Smith et al. (2000a) of

statistics related to mean levels of PM10 and PM2:5. In the data set we used

for Phoenix, over the time period for which deaths were available (2/1/95 to

12/31/97), the mean level of PM2:5 was 13.2 �g/m3, the mean ratio of PM2:5

to PM10 was 0.28, and the value of r, the correlation coeÆcient between PM2:5

and PM10�2:5, was 0.68. For three-day aggregate values, the mean and mean

ratio are virtually the same, but the correlation coeÆcient increases to 0.74.

4 Time series analyses

In this section, we review several issues related to time series analyses of PM

data, concentrating on those that take mortality as an endpoint.

4.1 The NMMAPS study

One of the most signi�cant new developments in particulate matter research

since the 1996 PM CD is the NMMAPS study (Samet et al. 2000a,b) which

has combined evidence from initially 20, and in later parts of the report 90, of

the largest cities in the U.S. This work has, naturally, been given considerable

attention to the CD, though with very little attention to the actual methodology

involved. Given that we believe this is very important to the interpretation of the

results, the following comments are concerned primarily with the methodology

rather than the results of the NMMAPS reports.

The simplest approach to combining regression estimates from di�erent cities

is a meta-analysis in which the results are weighted with weights inversely pro-

portional to the variance of the individual city estimates. This approach can

be criticized as not allowing for random e�ects between the cities | in e�ect,

a simple meta-analysis assumes that the e�ect being measured is the same in

all cities, whereas in fact, one would expect the e�ects to be di�erent in di�er-

ent cities. (To give just one among many reasons why, it is obviously the case

that the composition of particulate matter varies by city, and there is growing

evidence that PM composition has an important in
uence on health e�ects,
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though the precise nature of that in
uence is far from being well understood. If

PM e�ects are analyzed city by city, without explicitly taking PM composition

into account, one has to expect that the results will di�er to a greater extent

that what would be explained by variability in the individual regressions.) The

hierarchical model analysis introduced in the NMMAPS report and in Dominici

et al. (2000) allows for random e�ects, but there are potentially many di�erent

ways of specifying such a model. An even more radical, but potentially very im-

portant, extension of the analysis is to allow for spatial dependence among the

cities. However, after making a good start to the spatial analysis (Part I, Samet

et al. 2000a, p. 68), there is actually very little discussion of the spatial model

itself (for example, do spatial correlations based on the �tted model actually

correspond to observed spatial correlations in the data?), and in Part II (Samet

et al. 2000b), it is apparently abandoned in favor of a somewhat simpler, but

possibly less realistic, regional analysis.

From amodern perspective, all these models may be estimated using Bayesian

Hierarchical Models, but di�erent speci�cations of the models (e.g. di�erent

prior distributions) do lead to di�erent results, and there is still only an incom-

plete understanding on how the prior speci�cation in
uences the properties of

the resulting estimators. The methods of Dominici, Samet and Zeger are as

good as anything anyone else has derived, but there is not a full understanding

of their properties.

One example of the contrast produced among di�erent prior distributions

and modeling approaches is Table 4 of Part I (page 71), where the posterior

probabilities that the overall e�ect is positive are notably lower when the spa-

tial model is adopted than under either the univariate or bivariate non-spatial

models. The most likely explanation of this is that if spatial dependence is re-

ally present but is ignored, as in the univariate and bivariate models, then the

posterior variances of the parameter estimates are underestimated, resulting in

too high a posterior probability (the same positive posterior mean, but a larger

posterior variance, would lead to a smaller posterior probability of a positive

e�ect, assuming no substantial change in the shape of the posterior distribution

between the two analyses). In Table 4, even under the spatial model, all the

posterior probabilities are still over 0.8, but the fact that there is this di�erence

between the spatial and non-spatial models makes it more disturbing that the

spatial model has not been pursued more vigorously in Part II of the report.

The weighted regression (or meta-analysis) approach is also mentioned at a

number of places and speci�cally developed for the morbidity analysis in Part

II (pages 32{35 for the basic methodology). This is a simpler form of the non-

spatial hierarchical models analysis, and should lead to fairly similar results as

the Bayesian approach, as the authors claim at several points. The potential

disadvantages of the weighted regression approach are (i) the �nal estimates and

standard errors do not fully allow for uncertainty in estimating the variance

components, and (ii) the method of estimating the variance components, in

column 2 of page 34, is less eÆcient than maximum likelihood or Bayes | note,
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in particular, the possibility that 
̂ = 0. From various comparisons made in the

text, it appears that these issues do not a�ect the results too much, but they

might if compared with a fully spatial analysis in Part II.

In conclusion, we believe that the hierarchical modeling approach is sound,

and a major new contribution to the methodology of particulate matter research.

Our main concern is whether the NMMAPS authors have really explored enough

di�erent versions of the model, and especially, that they might not have gone

far enough in the spatial analysis. We do not feel that any of these issues are

adequately dealt with in the CD.

4.2 Publication bias

In Section 6.4.4 (lines 26, 27 of p. 6-238), the CD explicitly claims that it is

reasonable to select the most signi�cant lag among a set of possible lags even

though such a practice may bias the chance of �nding a signi�cant association.

This statement is made in spite of evidence of model selection bias that results

from this approach in the peer-reviewed literature (e.g. see the speci�c study

examined by Lumley and Sheppard, 2000) and evidence to the contrary that

can be compiled from studies reviewed in the CD alone. We now present an

analysis of data from the CD that indicates the presence of selection bias in the

published literature.

The NMMAPS study can be used as a gold standard against which to assess

the presence of publication bias in other PM mortality e�ect analyses. Among

the strengths of NMMAPS relevant for an analysis of publication bias, the data

were consistently handled across all cities, city-speci�c models were speci�ed

using the same criteria in each city, and the cities to be included were not

speci�cally selected based on outcome (size is a covariate, not an outcome).

We compare the compilation of city-speci�c results from NMMAPS (gleaned

from Figure 6-1 on page 6-41) with estimates reported in 21 separate references

in Table 6-1. To be eligible for this analysis, the paper had to report a total

mortality e�ect estimate for a 50 �g/m3 increment of PM10, reside in the peer-

reviewed literature and represent a distinct analysis or dataset. (Thus, for

example, we excluded separate published analyses of the 10 cities analyzed by

Schwartz (2000). We did not include Levy (1998) because in our opinion it was

based on incomplete work.) All the estimates considered were city-speci�c with

the exception of the Schwartz (2000) 10-city estimate and the Burnett (1998) 8-

city estimate. Table 1 shows the included studies, cities, statistical signi�cances

(as indicated by the CI), and e�ect estimates gleaned from Table 6-1 of the CD.

We test the null hypothesis that there is no di�erence between the NMMAPS

collection of results and the independently published set. We can test this

hypothesis in two ways: by looking at statistical signi�cance of the results and

by considering positive point estimates of excess deaths. In both cases we use

a two-sample test of proportions and rely on the asymptotic normality of this

statistic. In NMMAPS, 11 out of 88 city-speci�c estimates were statistically
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signi�cant (i.e. had con�dence intervals that excluded 0) and 63 out of 88 gave

positive point estimates for excess deaths. In contrast, out of the 24 separate

con�dence intervals reported in the 21 references, 19 of 24 were statistically

signi�cant.

First author and City Statistical Estimate for

publication date signi�cance 50�g/m3 PM10

Schwartz (2000a) 10 cities Sig 3.4

Moolgavkar (2000a) Cook County - .5-1

Moolgavkar (2000a) Maricopa County - .25-1

Moolgavkar (2000a) LA - .5

Ostro (1999a) Cochella Valley Sig 4.6

Ostro (1999a) Cochella Valley NS 2.0

Fairley (1999) Santa Clara County - 8

Pope (1999a) Ogden Sig 12

Pope (1999a) Salt Lake City Sig 2.3

Pope (1999a) Provo NS 1.9

Schwartz (2000) Chicago Sig 4.5

Lipmann (2000) Detroit NS 4.4

Gwynn (2000) Bu�alo Sig 12

Mar (2000) Phoenix Sig 5.4

Tsai (2000) Newark Sig 5.7

Tsai (2000) Camden NS 11.1

Tsai (2000) Elizabeth NS -4.9

Gamble (1998) Dallas NS -3.6

Burnett (1998a) 8 Canadian Cities Sig 3.5

Burnett (1998a) Toronto Sig 3.5

Wordley (1997) Birmingham UK Sig 5.6

Hoek (2000) Netherlands Sig 0.9

Ponka (1998) Helsinki Sig 18.8

Peters (1999a) Czech Republic Sig 4.8

Michelozzi (1998) Rome Sig 1.9

Wichmann (2000) Frankfurt Sig 6.6

Morgan (1998) Sydney Sig 4.7

Ostro (1998) Bangkok Sig 5.1

Table 1: Studies including PM10 mortality estimates in CD, Table 6.1.

This leads to a z-statistic of 7.29 and resoundingly rejects the null hypothesis

of no di�erence. Similarly, of the 28 separate e�ect estimates reported, 26 were

positive, leading to a z-statistic of 3.09 for this comparison. Again the null

hypothesis of no di�erence is rejected. Thus by relying only on information
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summarized in the CD, it is reasonable to conclude that the statement on page

6-238 (lines 26-27) is inappropriate.

Since the study of air pollution health e�ects is no longer in its infancy, it

is not appropriate for studies to continue to operate in a hypothesis-generating

mode where a priori no single candidate model is preferred and the investigators

report the model producing the results most consistent with the prevailing prior

hypothesis. The standard of analysis in the epidemiologic health e�ects liter-

ature must shift away from hypothesis generation to hypothesis con�rmation.

Hypotheses ought to be stated a priori, then tested and reported. Only after

this con�rmatory analysis can more exploratory secondary analyses be done,

analyses that may consider other possible models. Even then recognition of the

potential bias due to model selection should be speci�cally acknowledged in the

CD.

4.3 Model selection

From a statistical point of view, the common epidemiological practice of choos-

ing variables (including lagged variables, co-pollutants, etc.) that maximize the

resulting e�ect estimates is a dangerous approach to model selection, particu-

larly when the e�ect estimates are close to 0 (i.e. RR close to 1). As has been

demonstrated in Lumley and Sheppard (2000), the e�ect of choosing lags for

PM10 in this fashion has a bias which is of the same order of magnitude as

the relative risk being estimated. This, in particular, throws doubt over the

results of Sheppard et al. (1999), which on the face of it yielded a convinc-

ing case for the e�ect of PM10 and/or CO on the rate of hospital admissions

of asthmatic children, since the Lumley and Sheppard simulation study used

parameter values corresponding to those in Sheppard et al. (1999). More im-

portantly, it demonstrates through a speci�c study the magnitude and type of

bias that may be operating in all air pollution epidemiologic studies that select

the most signi�cant lag after evaluating a set of lags.

Similar selection bias results were illustrated by Smith et al. (2000b). Thus,

statistically speaking, doubts can be thrown over all studies which do not use

an objective information criterion for selecting variables and/or lags. While it

could be argued that, e.g., PM10 acute health e�ect generally appear to operate

at lag 1 day) the analyses of Clyde (2000) and Clyde et al. (2000) �nd PM10 lag

1 as a strong predictor in most of the models ranked highest be either AIC or

BIC, using a Bayesian model averaging procedure), the literature, perhaps due

to the variable selection practice mentioned above, does not show substantial

agreement as to which lag(s) to use.

While there are several model selection criteria (such as C
p
, BIC, AIC, Bayes

factors etc.), and no consensus within the statistical community regarding which

criterion to use, there is agreement among statisticians that stepwise methods

have serious drawbacks in terms of bias. In particular, when the estimated risk

e�ects are very small, the epidemiological selection principle not only leads to
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bias in the estimates, but also to a false sense of scienti�c consensus, in that

the estimates from models so selected will tend to be more similar than what is

actually warranted by the data.

The advantage with the Bayesian model averaging procedure, as used by

Clyde (2000) and Clyde et al. (2000), is that several models that are well

supported by the data are considered simultaneously, rather than selecting a

single best model. The standard error of relative risk estimates obtained in this

fashion re
ect the model selection procedure, while methods selecting a single

model tend to ignore the selection, and calculate standard errors as if only the

chosen model had been considered. Another feature of Bayesianmodel averaging

is that it is straightforward to incorporate prior beliefs about important lags

and variables in the analysis (although Clyde and co-workers have tended to

weight all possible models equally). If the data disagree with the prior beliefs,

this comes out of the analysis. A drawback, on the other hand, is that the

methodology is somewhat sensitive to which criterion is used to rank the models

(see Clyde, 2000).

4.4 Non-linear dose-response relations and thresholds

One of the critical questions associated with the translation of epidemiological

studies into particulate matter standards is whether the dose-response relation-

ship is linear and whether there is any evidence of a threshold, i.e. a critical

level below which there is little or no e�ect of increasing air pollution on health.

Many of the early studies of PM-health relations were based on levels of PM

much higher than those typically observed today. For example, in the notorious

\London smog" of December 1952, in which there are estimated to have been

4,000 excess deaths as a result of air pollution, smoke levels reached as high

as 3,000 �g/m3. Schwartz and Marcus (1990) reported that mean smoke levels

in London declined from about 500 �g/m3 to about 60 �g/m3 over the period

1958{1971, with corresponding decreases in the death rate. (The measure of

air pollution used in these studies was \British smoke", which as an extremely

rough guide is typically about twice the PM10 level.) Schwartz and Marcus were

possibly the �rst authors to claim that health e�ects actually persisted to the

very lowest levels of PM, though their claims were quickly followed by a number

of others | Pope (2000) has provided further historical perspective.

The issue, as it appears to us, is not whether very high levels of pollution

are responsible for mortality e�ects | this seems to be established beyond

reasonable doubt | but whether the e�ects really do persist to a level below

that of the current PM10 standard, which would justify a tighter standard. This

requires critical examination of the shape of the dose-response curve across a

wide range of dose levels, but particularly at those near to or below the current

standard. It is not suÆcient to argue that the relationship must be linear unless

proved otherwise, though this reasoning is implicit in any hypothesis test that

takes a linear relationship as the null hypothesis.
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Our own attempts to examine this issue have produced confusing results.

Smith et al. (2000a) examined both �ne and coarse particle e�ects in Phoenix,

concluding that there is a threshold (in the region of 20{25 �g/m3) for �ne

particles, but not for coarse particles. (As a side comment on a statement made

in the CD, page 6-247 remarks on the fact that the �tted nonlinear relationship

for �ne particles is roughly V-shaped, being a decreasing function of PM at low

PM levels, and questions whether this is biologically plausible. We agree that

it is probably not, but we did not claim that the negative slope is statistically

signi�cantly di�erent from 0 | the con�dence bands drawn in the paper show

that it is not. On the other hand, we did quote p-values lower than 0.01 against

the hypothesis of an overall linear e�ect.) Smith et al. (2000b) claimed evidence

for an increasing slope in the dose-response relationship, and possibly for the

existence of a PM10 threshold at a level above 50 �g/m3, in data from Birm-

ingham. On the other hand, the same methods applied to data from Chicago

(Smith et al. 1999) showed no evidence of a threshold and even a sharply in-

creasing e�ect in the range 0{20 �g/m3, a result which is also of questionable

biological validity. More broadly, the CD openly acknowledges the diÆculty

in identifying thresholds, for example on page 6-9, and recognizes that even if

thresholds do exist on an individual level, such e�ects may be masked when

aggregated over the population (page 6-246).

Against this background, it is to be welcomed that there are some recent

studies, notably Schwartz and Zanobetti (2000) and Daniels et al. (2000), that

have sought to resolve the issue by combining data from a number of cities.

However, we question whether the analyses have yet been taken far enough to

establish anything conclusive.

For example, Daniels et al. (2000) took the same 20-cities data as in the

NMMAPS study, and �tted a log-Poisson regression model including all the

usual covariates (current day and 3-day averaged lagged days for temperature

and dewpoint, both modeled via cubic splines, long-term trends also modeled

by cubic splines, plus day of week and age-group e�ects), initially treating PM10

(a) as a linear e�ect, but then modifying it to (b) modeling PM10 nonlinearly

using cubic splines, with �xed knots at 30 and 60 �g/m3, (c) a threshold model.

This analysis was initially conducted on a city-by-city basis, but then combined

across cities by a hierarchical models analysis. The form of hierarchical model

was to assume that the parameter estimates of interest for city c, �̂
c
say, are

distributed according to �̂
c
� N [�

c
; V

c
] where �

c
are the random e�ects for city

c and V
c
is a covariance matrix for the estimates at city c (one presumes | in

the paper, V
c
is not actually de�ned), while the random e�ects �

c
are drawn

independently from N [�;D], � and D having 
at prior distributions. This de-

�nes a hierarchical structure from which one can draw posterior distributions by

Gibbs sampling, though many other hierarchical structures are possible, if dif-

ferent assumptions are made for the inter-city e�ects. This scheme was used for

the linear and spline models for the PM-mortality relationship; for the thresh-

old model, noting the diÆculty of estimating thresholds in individual cities,
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the authors did not attempt any hierarchical approach but simply combined

the log likelihood across cities, implicitly assuming independence from city to

city. Throughout the paper, beyond the direct comparison among approaches

(a){(c), there is no attempt to study the robustness of the conclusions against

alternative model speci�cations, and the justi�cation for the hierarchical model

assumptions is not clearly made at all. Given the emphasis made on regional

and spatial analyses in earlier analyses of the NMMAPS data, one would have

expected some consideration of similar issues here.

Despite these criticisms, the analysis by Daniels et al. was a good �rst stab

at the problem. However, as things currently stand the analysis is incomplete,

and we anticipate that it will take a number of alternative analyses of the same

or similar data before any de�nitive conclusions can be drawn. This is only

to be expected, given the complexity of the issues involved and the number of

alternative approaches that are potentially available for estimating non-linear

dose-response e�ects simultaneously in a large number of cities. The analysis

by Schwartz and Zanobetti (2000) also used nonlinear dose-response functions

and combined data across cities via a meta-analysis approach, but this raises

similar issues regarding the sensitivity of the analysis to alternative methods of

statistical analysis, especially, alternative approaches to the meta-analysis. The

narrowness of the con�dence bands in Fig. 2 of Schwartz and Zanobetti, when

compared with Fig. 3 of Daniels et al., does lead us to question whether the

Schwartz-Zanobetti approach is adequately allowing for inter-city variation.

The results of both papers imply that there is no strong evidence against

a linear relationship, at least for all-cause, cardiovascular and respiratory mor-

tality (Daniels et al. do suggest the existence of a threshold if cardiovascular

and respiratory deaths are excluded), but we do not see these two studies as

resolving these very complex issues. Our criticism of the CD (speci�cally, the

section between pages 6-245 and 6-248) is that is has focussed exclusively on

the results of these papers and has not paid any attention to the methodology

of the analysis. However, without appreciating the methodology that was used,

and its strengths and limitations, we do not think it is possible to form an over-

all scienti�c judgement of the results. At the very least, the CD should have

highlighted the need for more work on these issues.

4.5 Co-Pollutants

The issue of whether co-pollutants need to be included in health e�ects analy-

ses, or if the analysis becomes cleaner when only one pollutant at the time is

included in the analysis, is subject to substantial, and in our view very confused,

discussion in the Criteria Document. It appears that the authors are arguing

that since many di�erent co-pollutants tend to be correlated, the uncertainty of

the health e�ects estimates tend to cloud the conclusions. This is only the case

if one assumes a priori that particulate matter must have an e�ect on health

independently of other pollutants. This, however, is what the analyses discussed
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in the document are attempting to investigate, and the conclusions are far from

clear-cut.

In the NMMAPS report, the e�ects of PM10 are, generally, not much changed

if the gaseous co-pollutants (O3, SO2, NO2 and CO) are included as additional

covariates in the models (see, in particular, Fig. 25 on page 27 of Part II). On

the other hand, comparisons of PM10 for the primary pollutant, with each of the

others as a primary pollutant, still does not show clear evidence that PM10 is the

primary \culprit" as far as pollution-mortality e�ects are concerned. O3 e�ects

in summer, and each of the other gases overall, are statistically signi�cant, or

very nearly so, in at least one of the analyses reported (Figs. 26{29, pp. 27{28).

Note that these analyses are based on the 20 cities, not the 90 cities. It would

be of interest to see them repeated for the full 90 cities.

In many US cities ozone is only measured during the "ozone season", which

generally does not include the winter (when particulate matter due to wood

smoke is prevalent, especially in Western US). This adds substantially to the

diÆculty of separating out the e�ects of di�erent pollutants.

The epidemiological evidence of the severity of �ne particle health e�ects

is simply not yet available: there is insuÆcient availability of PM2:5 data to

draw any �rm conclusions. There are several studies in which the PM e�ects

disappear when other pollutants are included in the model. There are also

several studies with the opposite result. In our opinion, the most severe problem

is that we do not yet have a �rm grip on the composition of particulate matter

in di�erent parts of the United States. The criteria document authors seem

to expect that health e�ects of particulate matter is a matter only of the size

of the particles; not of the chemical composition of the particles. The variety

of results with respect to co-pollutants can perhaps be caused by the variety

of chemical compositions; this is certainly a likely explanation of the regional

variability found in the 90-cities study.

5 Cohort studies

The claim that particulate matter causes long-term e�ects as well as short-term

e�ects relies almost entirely on three prospective cohort studies, the Harvard

Six-Cities Study (HSC | Dockery et al. (1993)), the American Cancer Society

Study (ACS | Pope et al. (1995)) and the Adventist Health Smog Study

(AHSMOG | Abbey et al. (1999)). The HSC and ACS studies were included

in the 1996 PM Criteria Document and, as noted on pages 6-81 and 6-82 of the

current draft CD, raised a number of questions | the four speci�cally listed

there are (1) whether important confounding variables have been omitted, (2)

the in
uence of other atmospheric pollutants besides PM, (3) the evaluation

of time scales for long-term exposure e�ects, and (4) the existence of pollution

thresholds.

The most signi�cant new study published since the 1996 PMCD is a major re-
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analysis of the HSC and ACS studies sponsored by the Health E�ects Institute

(Krewski et al. (2000)). As a result of these re-analyses, the draft PMCD

reports (p. 6-82) that \considerable progress has been made towards addressing

further the above issues" and, while admitting that the results of the AHSMOG

study have been less decisive, concludes that (p. 6-94) \there is evidence for

an association between long-term exposure to PM (especially �ne particles) and

mortality". The further summary on chapter 9 (especially, Section 9.6.2.2, page

9-64) concludes that \One of the most important advances since the 1996 PMCD

is the substantial veri�cation and extension of the �ndings" (of the original HSC

and ACS studies).

While we acknowledge that the HEI re-analysis was a very important study

that added considerable depth and breadth to the original studies of Dockery et

al. (1993) and Pope et al. (1995), we strongly dispute the implication, evident

in the above quotes, that it has cleared up all the problems associated with

the earlier studies. The re-analyses identi�ed numerous methodological issues

whose resolution is very far from clear at the present time.

We have no dispute with Part I of the HEI re-analysis, which was concerned

with an audit of the data sources and veri�cation that the original statistical

analyses, as reported by the original authors, would indeed produce the results

cited in the original papers. This part of the study was well executed and indeed

helped to clarify a number of issues about exactly how the original authors

performed their analyses. The comments below all refer to Part II of the re-

analysis, which was called a \sensitivity analysis" but in reality went well beyond

mere checking of the sensitivity of the results to certain assumptions in the

original analyses, being a wholescale re-examination of the methodology that

lay behind the study.

5.1 The ecological nature of the studies

The draft PMCD (page 6-2) cites Rothman and Greenland (1998) as classifying

four common types of epidemiological study in order of increasing inferential

strength, with \ecologic studies" as number 1 (lowest strength of inference),

followed by 2. time series studies, 3. longitudinal panel and prospective cohort

studies, and 4. case-control studies. The implication is that the cohort studies lie

higher up the inferential food chain than the time series studies, and form a good

basis for causal inference, though it is admitted that \the use of community-

level or estimated exposure data may weaken this advantage, as in time-series

studies".

In fact, we would argue that the three studies referred to are primarily eco-

logic studies. They would be convincing if they succeeded in correlating varia-

tions in mortality with variations in air pollution exposure within a community.

But the comparisons they make are between communities. Taking HSC as an

example, the original analysis employed a Cox proportional hazards analysis

using various individual-level covariates (age, sex, smoking history, body-mass
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index and education level) to compute adjusted mortality rates for each city, and

then (Dockery et al. (1993), page 1757 recomputed as Krewski et al. (2000),

p. 76) plotted the resulting mortality rate ratios against mean levels of several

air pollutants. For example, Portage, Wisconsin had the lowest adjusted death

rate amongst the six cities and Steubenville, Ohio, had the highest; it was also

the case that Portage had the lowest and Steubenville the highest of both �ne

and total particles (with several other pollutants showing a similar pattern).

A \pure" ecologic study would be one which compared the average mortality

rates to the average pollutant levels without any adjustment for individual-level

covariates. That would have the obvious 
aw that di�erences observed among

the six cities could be due to di�erent distributions of those covariates (for

example, more smokers in Steubenville than Portage) rather than air pollution

e�ects. Certainly, the HSC study was better than that. But the assertion

of a causal relationship between air pollution and long-term mortality rates

amounts to the statement that there cannot be any other possible cause for

these di�erences. This we would dispute. All the reported relative risks due to

air pollution, derived from the HSC study, are based on regression on precisely

these six data points.

The re-analysis tried to test these conclusions by including some other co-

variates in the analysis, such as occupational type and an indicator of population

mobility. It was the case, for example, that among the six cities, Steubenville

had the highest proportion of the population working in \dirty" occupations.

Despite this, associations between total mortality and pollution still remained

under the re-analyses, though they did �nd one curious fact, that the associ-

ation does not seem to be present among the segment of the population with

a post-high-school education (this fact is noted and highlighted in the draft

PMCD).

Nevertheless, the fact that the relationship between standardized death rates

and mortality was not destroyed by the inclusion of a small number of speci�c

alternative covariates does not mean that the original conclusions have been

proved correct. The weak inferential basis for making causal assertions in this

study remains, however many alternative covariates are tested.

5.2 The ACS study

Although the ACS study was not as carefully carried out as the HSC study

(for example, the participants were largely volunteers rather than selected by

randomization), it involved many more participants (552,138 as against 8,111)

and many more cities (a total of 154). (Just as a point for comparison, the

AHSMOG study also involved a relatively small sample size, 6,338 subjects,

and this fact may be responsible for the inconclusive results of that study.)

Although the general points about the ecological nature of the study are just as

true of ACS as they are of HSC, with the much larger number of cities, there are

many more possibilities for alternative modeling of the inter-city data. Indeed,
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we would regard the innovations made by the re-analysis team in this respect

as one of the major contributions of the entire study.

In the rest of this subsection, we comment on three of these which may all

be thought of as addressing, in di�erent ways, the issue of ecological e�ects, (i)

ecologic covariates, (ii) random e�ects models, and (iii) spatial analyses.

5.2.1 Ecologic covariates

As an attempt to evaluate whether inter-city di�erences in mortality rates could

be due to other city-level variates than particulate matter pollution, the re-

analysis developed a suite of 30 \ecologic covariates" (20 of which were actually

used in the analysis). These included demographic and socioeconomic variables

(e.g. percentage of whites and blacks, poverty level, mean income), climate

and physical environment variables (e.g. mean altitude, mean temperature)

and health service indicators (number of physicians, number of hospital beds).

They also included alternative air pollution indicators (CO, NO2, O3, SO2).

With the ecologic covariates introduced one at a time into the analysis, only

two had a substantial impact on the coeÆcient due to sulfate particles in the

total-mortality analysis. These were population mobility and SO2 (Table 34,

p. 180, of Krewski et al. (2000)). Moreover, when SO2 was treated as the

primary covariate, the relative risk due to SO2 was higher than that due to

sulfate particles, and una�ected if sulfate particles were also included in the

analysis. Other results largely con�rmed the same pattern. The re-analysis

team also conducted rather limited analyses using multiple ecologic covariates.

The idea of incorporating ecological covariates is evidently a controversial

part of the work. The original authors of the ACS study, commenting at the

end of the Krewski et al. report (page 275), remarked \From the very beginning

of the reamalysis, we were opposed to the idea of taking a myriad of ecologic

variables and including them as covariates in the models...[In the ACS study]

we considered the original work to be a straightforward, clean, elegant way to

generate and test a speci�c well-de�ned hypothesis".

Of course, it is perfectly true that introducing a very large number of irrele-

vant covariates has the potential to weaken a genuine e�ect which is present in

the data. But the passage just quoted seems to be denying the possibility of eco-

logical e�ects. Although imperfect, we believe the ecological covariates analysis

was an important part of the re-analysis and, to some extent, was successful in

demonstrating that a number of plausible ecological covariates could not in fact

explain the di�erences in mortality rates. We feel that they could have tried

multiple regression analyses to a greater extent than they did, recognizing that

the di�erences in mortality could be due to combinations of ecological factors

rather than any one factor operating on its own. Another possible extension of

the analysis would be to allow interactions among di�erent ecological covariates.

The interpretation of the two variables that were signi�cant remains open to

dispute. Population mobility may be related to educational status, and it was
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observed earlier that the PM e�ect does not seem to be present among those if

high educational attainment. The �ndings about SO2 relate to the whole issue

of co-pollutants, to which we return later.

5.2.2 Random e�ects models

Even if it were correct that the di�erences in air pollution were the major factor

explaining di�erences among mortality rates in the di�erent cities, it would be

scarcely credible that air pollution could be the only e�ect. Even after adjusting

for air pollution, one would expect to see di�erences among the cities that go

beyond individual-level variation. One of the methodological contributions of

the re-analysis was an analysis that allowed for random e�ects in cities to explain

other sources of variation. The results (Table 50, p. 213) showed no great

sensitivity in the point estimates and con�dence intervals when the random

e�ects model was included. However, it was noted by the Review Panel that

the estimated values of � , the standard deviation of the city random e�ect, was

comparable with the uncertainty in the estimated PM e�ect, and this in turn

could complicate the interpretation of the PM e�ect. \If a large component of

the variance is unexplained in the data, a model including suÆcient variables

to identify this residual variation might produce di�erent regression coeÆcients

for the variable of interest" (Krewski et al. (2000), page 259).

5.2.3 Spatial analyses

Going beyond a simple random e�ects model, a major �nding of the HEI re-

analysis was that there seems to be substantial spatial correlation among both

air pollution and adjusted mortality rates. Although this could be a separate

issue from that of \ecological bias", they are connected in that spatial correlation

implies there are other sources of inter-city variation than pure variation in the

level of air pollution. In a sense, the spatial correlation that remains after known

covariates are taken into account can be regarded as representing additional

variability due to unknown covariates.

Spatial correlation was detected by drawing maps, by formal tests of spatial

correlation (Moran's I and G tests), and by performing regression analyses that

adjusted for spatial correlation. Since our main concern in this commentary is

the possible e�ect of spatial correlation on the conclusions about particulates

and mortality, we concentrate on the third of these issues. Within the framework

of spatially adjusted regression analyses, three kinds of analysis were carried

out that tried to allow for spatial correlation in the regression. The �rst of

these was based on a simple regional classi�cation with random e�ects due to

region. This analysis, while certainly a good �rst start on the problem, cannot be

expected to adjust for all the e�ects of spatial correlation. The second analysis

was based on �rst passing the data through a spatial �lter designed to achieve

approximate uncorrelatedness, and then regressing the �ltered data. Although
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it seems promising, this method has uncertain properties |for example, the

de�nition of the spatial �lter is ad hoc and, even if it were derived from a

speci�c spatial autocorrelation function, no allowance is made for the e�ects of

estimating the autocorrelation structure.

The third analysis that attempts to adjust the regression for the e�ects of

spatial correlation is one based on a speci�c spatial model. The model selected

by the authors of the study was the SAR (simultaneous autoregressive) model,

in which the map of the US was covered by so-called Thiessen polygons, one city

in each polygon, and two cities considered to be \neighbors" if their polygons

touched each other. The dependence between neighboring cities is represented

by a correlation parameter �. There are various reasons why this model is not

especially suitable for the kind of spatial dependence being studied. The tiling of

the map does not correspond to any physical model of the spatial variation, and

has some counterintuitive properties, e.g. if new cities were added to the study

the Thiessen polygons and hence the assumed correlations would change, but

it seems implausible that the correlation between two cities in the study would

change according to which additional cities were also included. The model is

also oversimpli�ed in that a single parameter � is assumed to characterize the

spatial dependence across the entire country. In our view, it would be more

appropriate to use a continuous random �eld model of the kind common in

geostatistics and environmetrics, and the authors might also have explored the

possibility of nonstationarity in the spatial dependence structure.

In spite of the incomplete nature of the spatial analysis, it did have a signif-

icant impact on the results. For example, in an analysis including both sulfate

particles and SO2 (Krewski et al. (2000), pp. 210{211), the RR for sulfate

dropped from 1.20 to 1.08 (95% CI: 0.91 to 1.28) though that for SO2 was less

a�ected (RR from 1.35 to 1.31; CI 1.12 to 1.50). If such a substantial change

is possible through only a one-parameter addition to the model, it can only be

speculated what would happen with more realistic spatial models.

5.3 Threshold e�ects

As noted in our introduction to this section, one of the issues identi�ed in the

1996 CD as an issue needing clari�cation (in connection with cohort studies)

was that of threshold e�ects. Unfortunately, the re-analysis shed little light on

that issue.

Although there may not be evidence for a strict \threshold" in PM-mortality

studies, there may well be an nonlinear dose-response e�ect, with the incremen-

tal e�ect due to PM changes being higher at high levels of PM than at low

levels. The re-analysis investigated this issue at two di�erent points.

First, Fig. 6 of the report (Krewski et al. (2000), page 162) shows standard-

ized residuals of mortality against either sulfate concentration or �ne particles,

for all-cause mortality, for cardiopulmonary mortality, and for lung cancer mor-

tality. All six �gures are of similar shape. A widely dispersed scatterplot has

19



been smoothed using cubic splines, and the resulting smoothed curve superim-

posed on the scatterplot with con�dence bands. The shapes of the �tted curves

vary, and e.g. for the dependence of all-cause mortality and cardiopulmonary

mortality on �ne particles actually show a higher slope at low PM levels (10{

15 �g/m3) than higher. However, in all six plots the width of the con�dence

bands, relative to the total variation in mortality rate, makes it hard to give

any de�nitive conclusion about whether the overall relationship is linear or not.

In contrast, Figs. 10 and 11 on page 175, in which the ordinate is a log

hazard ratio but otherwise supposedly conveying the same information as Fig.

6, gives a very di�erent impression | a much more de�nitive shape to the curve

which, in the case of PM2:5, shows a statistically signi�cant decrease between

about 16 and 21 �g/m3. We are extremely puzzled about this.

5.4 Co-Pollutants

As noted in our discussion of ecological covariates, SO2 showed up as a signi�cant

variable (though not other atmospheric pollutants that were also considered).

Consistently throughout the re-analysis study, when SO2 and particulates were

treated on equal footing, SO2 came out showing a stronger e�ect than particles.

There is some controversy about the interpretation of this (page 6-86 of the

draft CD) because the sulfate measurements were complicated by an artifactual

component which did appear to in
uence the results. SO2 is generally a precur-

sor to sulfate particles and it is quite possible that while it is the particles that

have the health e�ect, it is the SO2 that is more easily detected and measured,

thus creating an apparently stronger e�ect for SO2 than for sulfate. However,

this is hypothetical: the exclusive focus on particulate matter as a pollutant

of interest does not seem to us to be justi�ed by the current epidemiological

analyses.

5.5 Are they really measuring long-term e�ects anyway?

Throughout the discussion of time series and cohort studies, the impression

created is \time series studies prove there are short-term e�ects and cohort

studies prove that there are long-term e�ects". Evidently, \acute e�ects" deaths

are also being included in the cohort studies, and there is no direct way to

separate the two.

The draft CD (page 9-61) cites the 1996 CD that \PM e�ect size estimates

for total mortality indicate that a substantial portion of the deaths re
ected

cumulative PM impacts above and beyond those exerted by acute exposure

events", and goes on to report the \substantial veri�cation and extension" of

these �ndings by the re-analysis. In other words, measure the RR for acute

e�ects using time-series studies, and that for acute and chronic e�ects combined

using cohort studies, and if a signi�cant di�erence exists, it must be due to

chronic e�ects.
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However, even when considering the time series analyses and the cohort anal-

yses separately, there exist substantial di�erence from one analysis to another

due to model selection, and moreover, the estimated RRs, even if statistically

signi�cantly greater than 1, always have wide con�dence intervals associated

with them. To read much interpretation into di�erences in RR levels from

completely di�erent types of analysis does not seem justi�ed.

The re-analysis addressed part of this issue, in the case of the HSC study,

by including PM as a time-dependent covariate. For ACS, the study was based

on a single PM measurement (from 1982) for each city, and the diÆculty with

interpreting the actual numerical value of a RR is that the 1982 level may

be completely unrepresentative of historical levels of PM, beyond some loose

expectation that the most polluted cities in 1982 were probably also the most

polluted cities in earlier years. This diÆculty has been acknowledged both

by the original authors and in the reanalysis. For HSC, some examination of

this issue is possible because the study authors did have available historical

records of PM (though not as far back as one would like to perform a genuine

\lifetime exposures" analysis). When this is included in the model, the e�ect is

considerable: comparing model 5 (treating PM as constant) with model 6 (time

dependent) in Table 14 of Krewski et al. (2000), the estimated RR drops from

1.31 (95% CI: 1.13-1.52) to 1.16 (1.02-1.32), in e�ect, a halving of the estimated

e�ect. This kind of sensitivity, to how the historical PM variable is treated,

underlines the extreme diÆculty of separating short-term and long-term e�ects

in this kind of analysis.

5.6 Summary of cohort re-analysis

It is not our purpose here to criticize the re-analysis itself, which accomplished

an enormous amount under intense time pressure. Virtually all the points men-

tioned here were brought up either by the re-analysis team themselves, or in the

HEI Review Panel commentary. The draft CD seems to have concluded that

the HEI re-analysis ended up con�rming all the major claims that were made in

the original HSC and ACS analyses. However, careful reading of the re-analysis

shows that there are in fact numerous very important issues of methodology and

interpretation, to which the re-analysis certainly made signi�cant contributions,

but which cannot be considered resolved at the present time. They may never

be.

6 Conclusions

One of our concerns about the PM Criteria Document is its failure to cover all

relevant literature, and in Section 2 of the present discussion, we have attempted

to �ll in one of the omissions, concerning the special issue of Environmetrics on

statistical analysis of particulate matter air pollution. More broadly, however,
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we feel that the CD has not succeeded in adequately conveying the statistical

and scienti�c interpretation issues that are involved in drawing conclusions from

such complex issues from large epidemiological data sets. The bulk of this re-

view has concentrated on two such kinds of studies: the time series analyses

of PM exposure and mortality in Section 4, and the cohort studies in Section

5. Both kinds of studies raise a number of common issues: how to combine

data from a large number of cities, especially when there is spatial dependence;

the possibility of threshold e�ects or, more generally, a nonlinear dose-response

curve; and the issue of co-pollutants. There are also some speci�c issues for

each kind of study. The time series studies appear to have been substantially

a�ected by publication bias, at least on the basis of our comparison of results

from the NMMAPS study (which we presume to be free of publication bias) with

other published analyses in the literature. There is also the question of model

selection bias, which has not received anywhere near adequate treatment in the

epidemiological literature. Bayesian model averaging is a relatively new tech-

nique developed by statisticians, and while not free of potentially problematic

assumptions of its own, does o�er a possible route to deriving results without

this kind of bias. On the side of the cohort studies, we feel that the very broad

issues raised by the ecological nature of the studies still needs further discussion,

though we recognize that the HEI-sponsored re-analysis introduced a number

of important new methodological developments.
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