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Abstract:

There is extensive and continuing concern over the
human health e�ects of atmospheric particulate
matter, which is reected in the debate over the 1997
EPA standards. Much of the evidence supporting
such standards comes from statistical and epidemi-
ological studies employing time series regression of
mortality and morbidity on a variety of covariates
including particulate matter. Among the statisti-
cal issues raised by such studies are multicollinearity
and selection e�ects when large numbers of related
regressors are considered simultaneously. We pro-
pose a method of dealing with such issues by viewing
them in an empirical Bayes context. The relation to
existing methods of dealing with multicollinearity,
including ridge regression and principal components
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regression, is discussed, as also is the issue of shrink-
age when many coeÆcients are estimated simultane-
ously. These ideas are illustrated with reference to
data from Philadelphia and Phoenix. The Phoenix
data set allows for direct comparison of the e�ects
of �ne and coarse particles, as well as the e�ects of
44 constituent chemical elements. One of our con-
clusions is that the e�ect of coarse particles appears
to be stronger than that of �ne particles, which is
contrary to some of the thinking underlying the 1997
revision of the standard.

1. Introduction

The environmental health e�ects of atmospheric pol-
lution have been the source of much political and sci-
enti�c controversy over the past several years. Par-
ticular controversy has arisen over the new standards
intoduced by the United States Environmental Pro-
tection Agency (EPA) in 1997, which con�rmed an
existing standard for PM10 (particulate matter of
aerodynamic diameter 10 microns or less) and in-
troduced a new standard based on PM2:5 (particu-
late matter of aerodynamic diameter 2.5 microns or
less). This led to many challenges including a hear-
ing before the U.S. Court of Appeals, which has,
temporarily at least, overturned the standard.
Much of the scienti�c debate surrounding these

standards is concerned with the statistical interpre-
tation of observed associations between daily par-
ticulate matter levels and daily mortality in obser-
vational time series. These issues have been exten-
sively discussed in previous papers, e.g. Samet et al.
(1995, 1997), Dominici et al. (1999a, 1999b), Zeger
et al. (1999) and Smith et al. (1998, 1999a, 1999b).
For a broad-based discussion of the scienti�c debate
surrounding particulate matter, including priorities
for future research, an excellent source is the NRC
report (National Research Council, 1998).
The present paper examines some of the statistical

issues associated with the presence of multiple pol-
lutants and associated questions of confounding and
multicollinearity. There are at least three separate
issues to consider here:

� The e�ect on the pollution-mortality relation-



ship of di�erent exposure measures created by
combining di�erent lags | for example, al-
though there are by now numerous studies of
the relationship between PM10 and mortality,
there has been no unanimity on which lags of
PM10 to include (present day's value, one-day
lag, etc.) or on how to account for the selection
of an exposure measure in subsequent tests and
con�dence intervals;

� The e�ect of di�erent atmospheric pollutants |
apart from PM10 and ozone (O3), three of the
EPA's other \criteria pollutants", sulfur diox-
ide (SO2), nitrogen dioxide (NO2) and carbon
monoxide (CO) have been studied for possible
mortality e�ects;

� The e�ect of di�erent constituents of particu-
late matter | for example, the Phoenix data
set discussed below includes not only PM10 and
PM2:5 readings, but also measurements for 44
chemical elements contained within PM2:5, and
it would be of great interest to establish which
of these elements was most responsible for the
observed e�ects.

In the remainder of the paper, we �rst discuss
some general methodological issues and then con-
sider two speci�c data sets.

2. Methodology

2.1 The problem of multicollinearity

The main model considered in this paper is a stan-
dard linear regression equation

y
t
=
X
j

�
j
x
tj
+ �

t
; (1)

where y
t
is some transformation (e.g. log or square

root) of daily mortality on day t, fx
tj
g are known co-

variates, f�
j
g are unknown coeÆcients and f�

t
g are

independent, normally distributed errors with mean
0 and unknown common variance �2. The covari-
ates typically fall into three categories: (a) seasonal
or long-term trend e�ects, which we shall represent
as linear combinations of cubic spline basis func-
tions with estimated coeÆcients (Samet et al 1997,
Smith et al. 1998), (b) meteorological variables, and
(c) pollution variables. One of the diÆculties in
this kind of analysis is that many of the covariates
are themselves highly correlated, leading to multi-
collinearity. In the past, this issue has surfaced even

when only a single pollution variable has been con-
sidered, because of possible confounding with mete-
orology, but the e�ect may be expected to be en-
hanced when many pollutants are considered simul-
taneously. In the present paper, we concentrate on
the pollutants themselves, treating the meteorology
and long-term trend e�ects as known nuisance fac-
tors.

An excellent discussion of multicollinearity and
possible remedies has been given by Brown (1993),
who identi�ed three broad strategies to deal with it:

� Ridge regression, in which the standard least
squares regression estimator is replaced by

�̂
(c) = (XT

X + cI)�1XT

y: (2)

Here, �̂(0) is the usual least squares estimator.
As c increases from 0, the estimator �̂(c) be-
comes biased, but often with a dramatic drop
in mean squared error (MSE),

� Principal components regression, in which the
X matrix is both orthogonalized and reduced in
dimension by applying a principal components
analysis to the X matrix prior to performing
least squares regression,

� Partial least squares regression, which is similar
to principal components regression except that
the selection of suitable linear combinations of
the X variables is based on maximizing the cor-
relation with y rather than maximizing the vari-
ance among the X variables.

The ridge regression estimator is often recom-
mended in cases where the design matrix X is far
from orthogonal, but even in near-orthogonal cases,
if there are many coeÆcients to estimate, ridge re-
gression may improve on standard least squares, be-
cause of shrinkage e�ects. In modern statistics, such
ideas are central to empirical Bayes methodology
(see e.g. Carlin and Louis 1996), which has already
been applied in a number of studies related to par-
ticulate matter (Samet et al. 1997, Dominici et al.
1999a).

However, the shrinkage e�ect is still only imper-
fectly understood: one feature, for example, is that
the amount of shrinking which is appropriate de-
pends on the purpose to which the analysis will be
put (in decision-theoretic terms, on the loss func-
tion). A theoretical analysis of this phenomenon has
recently been given by Shen and Louis (1998), and
motivates some of the techniques which will be used
in the latter part of the present paper.



2.2 Bayesian interpretation

Suppose there are p+ q regressors, where the �rst p
are \parameters of interest" (e.g the PM variables)
and the remaining q are nuisance parameters such as
coeÆcients of meteorology and trend terms. Writing
�
T = (�T1 �

T

2 ), X = (X1 X2 ), equation (1) may
be written

y = X
T

1 �1 +X
T

2 �2 + �; � � N(0; �2I): (3)

Standard theory shows that the least squares es-
timator of �1, denoted �̂1, satis�es

�̂1 � �1 � N(0; �2V �1) (4)

where

V = X
T

1 X1 �X
T

1 X2(X
T

2 X2)
�1
X

T

2 X1: (5)

In most cases �2 is unknown, but we have an in-
dependent estimator s2, with � degrees of freedom.
The Bayesian theory is easily extended to this case,
but for simplicity, we shall just assume �2 is known
here.
Since �̂1 is suÆcient for �1, all the desired esti-

mates, tests, etc., can be derived as functions of �̂1.
For example, in the case q = 0, the standard ridge
regression estimator may be derived from (2) as

�̂
(c)
1 = (XT

X + cI)�1XT

X�̂1; (6)

which can be viewed as a shrinkage operation per-
formed directly on the least squares estimator �̂1.
We adopt this viewpoint throughout the paper, i.e.
take (4) as the starting point, and view all subse-

quent estimators as operations performed on �̂1.
Suppose �1j�2 has prior distribution

N(�;W�1
�
2) with �, W known. A standard

Bayesian calculation shows that given �
2, the

posterior distribution of �1 given �̂1 is

N [(V +W )�1(V �̂1 +W�); (V +W )�1�2]: (7)

Thus, in particular, the posterior mean of �1 is

(V +W )�1(V �̂1 +W�): (8)

In the standard ridge regression setting, with V =
X

T

X , suppose we set W = cI , � = 0. Then (8)
agrees exactly with (6). This shows how ridge regres-
sion may be derived as a special case of the Bayesian
estimator.
From a decision theory perspective, it is well

known that the posterior mean is also the optimal
Bayes estimator under squared error loss. However,
it is not necessarily optimal with respect to other

loss functions. In many contexts where Bayes or
empirical Bayes analysis is performed, squared er-
ror is not the appropriate loss function. Two other
criteria which have been discussed are

� Select all �
j
such that �

j
� t for �xed t (as t

varies then this is equivalent to estimating the
empirical distribution function of the f�

j
g),

� Rank �1; :::; �p in order,

in either case with some penalty based on the costs
of misclassi�cation.
In the context of selecting \signi�cant" pollutants

in a pollutant-mortality study, either of these would
seem to be a more reasonable loss function than
mean squared error.

2.3 The scaling problem

The goals of ranking the f�
j
g, or of picking out all

values above a given threshold, do not make sense
if the parameters are de�ned on totally di�erent
scales. For example, one pollutant may be a highly
toxic substance present in the environment in minute
quantities, while another may be much less toxic but
also much more prevalent. Evidently, the resulting
�
j
values are not directly comparable.
We shall resolve this problem by rescaling all the

pollutants so that they have sample mean 1. The
rationale for this is as follows: suppose the j'th pol-
lutant has mean �

j
. If this is a toxic pollutant, then

an ideal solution would be to reduce it to 0. In that
case the bene�t, as quanti�ed through the reduction
in the mean value of y, is �

j
�
j
. However if all the �

j

values are the same number, which we are arbitrarily
assuming to be 1, then the bene�t is just �

j
. Thus

on this scale, the order of the �
j
values corresponds

directly to the potential bene�t to be derived from
controlling the di�erent pollutants.

2.4 Triple-goal estimators

Suppose �1 = (�11; :::; �1p): As noted already, there
are di�erent loss functions with respect to which we
might choose to estimate these parameters. Under
squared error loss, the Bayes estimate for �1k (1 �
k � p) is just the posterior mean:

�
k
= Ef�1k j yg: (9)

When the objective is to estimate the ranks R
k
=

rank(�1k) with minimum mean squared error, the
Bayes estimator is the posterior mean ranks,

�R
k
= EfR

k
j yg =

pX
j=1

Prf�1k � �1j j yg:



In general, �R
k
will not be an integer. If we require

that all estimated ranks be integers, the obvious es-
timator is based on ranking the �R

k
,

R̂
k
= rank( �R

k
): (10)

A third objective is to estimate the empirical distri-
bution function (EDF), G

p
(t) = 1

p

P
k
I(�1k � t);

where I(�) is indicator function. Under, e.g., in-
tegrated squared error loss, the Bayes estimate for
�xed t will be the posterior mean of G

p
(t),

�G
p
(t) = EfG

p
(t) j yg = 1

p

X
k

Prf�1k � t j yg: (11)

As with �R
k
, this is open to the criticism that the

estimator is not a member of the class of objects
being estimated (in this case, EDFs with at most
p mass points), but an alternative estimator which
achieves that objective is to put mass 1=p at each of
the points

Û
j
= �G�1

p

�
2j � 1

2p

�
; j = 1; :::; p: (12)

The resulting estimator is denoted Ĝ
p
.

The formulae (9){(12) are taken from a recent
paper by Shen and Louis (1998) where they were
derived in a simpler setting in which the parame-
ters had independent posterior distributions; their
derivations as Bayes estimators, however, hold in the
present setting as well. Shen and Louis argued that
the posterior means f�

k
g typically lead to too much

shrinkage if the loss function is anything other than
squared error, and they proposed an alternative set
of triple-goal estimators which is a single set of es-
timators designed to perform reasonably under each
of the three loss function. In our present setting we
have not attempted to derive a single \triple-goal"
estimator in the same sense as Shen and Louis, but it
is important to note that di�erent loss functions give
rise to di�erent estimates, and in particular that the
f�

k
g, which correspond to the standard ridge esti-

mators, are typically not optimal if the loss function
is other than squared error.

2.5 Specifying c

Brown (1993) discussed a number of approaches to
the ridge constant c, ranging from the graphical
\ridge trace" method, which is now regarded as too
ad hoc to be of general applicability, through various
forms of cross-validation, to the more formal \type II
maximum likelihood" procedure, where c is chosen

to maximize the likelihood based on the marginal
density

�̂1 � N [0; �2(V �1 + c
�1
I)]:

Since type II maximum likelihood is easily imple-
mented with modern software, we have adopted it
as the method of choice in the present study, though
it needs to be pointed out that the MLE does not
always exist (sometimes the likelihood is maximized
as c!1).

An alternative strategy might be fully Bayesian,
giving c a prior distribution and formulating the
problem as a hierarchical model. Although this
seems a promising possibility, it has not been con-
sidered in the present analysis.

2.6 Generalized ridge regression

So far, we have assumed that in the notation of (8),
W = cI with a constant c and identity matrix I .
However, of course, we could consider more general
speci�cations of the prior.

One idea is related to principal components re-
gression (PCR), briey mentioned at the begin-
ning of this section. Suppose V = U�UT where
� = diag(�1; :::; �p), �1 � ::: � �

p
> 0, and U is

orthogonal. Fix s where 0 < s < p. A PCR based
on the �rst s principal components is equivalent to
the usual least squares estimator after replacing the
last p � s columns of U by 0. This can also be de-
rived as a Bayes estimator, as follows. Consider a
prior based on W = UDU

T , in which D is a diago-
nal matrix with diagonal entries c1; :::; cp. Of course,
the case c1 = ::: = c

p
= c is the same as the model

for ridge regression given earlier. Consider the case
c1 = ::: = c

s
= 0 and c

s+1 ! 1; :::; c
p
! 1. It can

be shown that the Bayes estimator in this case is the
same as the PCR.

Thus, this form of prior, with arbitrary c1; :::; cp,
includes both ridge regression and PCR as special
cases and therefore may be regarded as a general-
ization of both. We shall refer to it as generalized
ridge regression (GRR). Type II MLEs for c1; :::; cp
are easily calculated; as with ordinary ridge regres-
sion, it can happen that some of the MLEs are in�-
nite, but since this is equivalent to omitting the cor-
responding principal components, this issue is less of
a problem here.

2.7 Model selection

In the analyses to follow, we take as our basic mea-
sure of pollution the average of pollutant levels form
days immediately preceding (and including) the cur-
rent day. However, we still have to specify m. This



will be done via a prior distribution, with an upper
bound M for m, and prior probabilities p1; :::; pM
associated with speci�c values of m. For example,
we may consider M = 5 with p1 = ::: = p5 =

1
5
. In

general, we assume a prior density of the mixture of
normals form

�1 �
MX

m=1

p
m
N(0;W�1

m
�
2);

where W�1
m

�
2 is the prior density corresponding to

model m. A technical point here is that in the typ-
ical case where the model selection corresponds to
setting certain components of �1 to 0, W�1

m
will be

singular and so in the literal sense, W
m
does not ex-

ist, but this can be dealt with formally by allowing
the components in question to have positive prior
variances and taking limits as those variances tend
to 0.
Under this model, the marginal density of �̂1 (use-

ful for type II maximum likelihood estimation) is

�̂1 �
X
m

p
m
N [0; (V �1 +W

�1
m

)�2];

and the conditional density of �1 given �̂1 (used for
the Bayesian inferences) is

X
m

�
q
m

q
�

�
N [(V +W

m
)�1V �̂1; (V +W

m
)�1�2]

with

q
m

= p
m
(V �1 +W

�1
m

)�1=2 �

� exp
�
� 1

2�2
�̂
T

1 (V
�1 +W

�1
m

)�1�̂1

�

and q
�

=
P

q
m
. Within this framework, therefore,

we may compute the posterior model selection prob-
abilities fq

m
=q

�

g, the type II MLE for c or c1; :::; cp
and posterior densities of �̂1, both conditionally on
model m and unconditionally (i.e. averaged over
models), by direct extension of the methods used
for a single model. We omit the details of these cal-
culations.

3. Analysis of Philadelphia data

3.1 Background and data

Our �rst analysis uses one of the most widely stud-
ied data sets, based on Philadelphia; see Samet et

al. (1995, 1997), who give references to many other
studies. The data set used by Samet et al. (1997)

Var. Mean SD 25% Median 75%

Mort 31.5 6.7 27 31 36
Temp 54.3 17.8 40.0 55.3 70.3
Dew 42.3 19.1 27.8 43.5 58.8
TSP 67.3 26.9 47.5 63.0 82.0
SO2 17.3 11.6 9.3 14.4 22.2
NO2 39.6 12.9 30.5 37.6 46.1
CO 17.4 7.3 12.6 16.0 20.5
O3 19.8 14.6 8.3 17.1 28.5

Table 1: Summary statistics for Philadelphia: Mor-
tality age 65+, temperature and dewpoint (oF), TSP
(�g/m3), SO2 (ppb), NO2 (ppb), CO (ppb � 100),
O3 (ppb). From Samet et al. (1997).

covered the period 1974{1988 included temperature
and dewpoint as meteorological variables, as well
�ve \criteria pollutants" (TSP, SO2, O3, NO2, CO).
Here TSP (total suspended particulates) are used as
an alternative to PM10 as regular measurements of
the latter did not begin until 1987.

Mortality data are available broken down into a
number of age and cause-of-death categories, but for
the present analysis, we consider only the age group
65+ and combine all non-accidental causes into a
single death count. Samet et al. (1997) claimed an
improved �t to the overall model by using di�erent
long-term trend estimates in the separate age cate-
gories 55{64, 65{74, 75+, but we have not attempted
that in our analysis.

A table of summary statistics is presented in Table
1.

We focus particularly on the following questions,
(a) the selection of lags of the pollution variables, (b)
assessing the e�ects of individual pollutants within
a muliple-pollutant model. Samet et al. (1997) com-
pared a large number of di�erent models with di�er-
ent combinations of pollutant variables, concluding
that there was general evidence of an association be-
tween air pollution and mortality but that it was not
possible to pinpoint this on a single pollutant based
on the evidence in this data set.

Our basic analysis uses the standard linear model
(1) with y

t
de�ned as square root of daily nonacci-

dental mortality in the 65+ age group.

3.2 Time trends

Time trends are modeled as a linear combination
of 180 B-spline basis functions: this is very similar
to the method employed by Samet et al. (1997);
see also Smith et al. (1998, pp. 96{98) for further
discussion of B-splines.



3.3 Meteorology

We considered an initial variable set consisting of
TEMP (daily mean temperature in oF), TEMPSQ
(square of TEMP), HITEMP=(TEMP-80)+,
LOTEMP=(25-TEMP)+, DEW (daily dewpoint
temperature in oF), DEWSQ, HIDEW=(DEW-
70)+, LODEW=(10-DEW)+. The variables
HITEMP, LOTEMP, HIDEW, LODEW were in-
tended to allow for possible di�erent behavior at the
extreme values of each variable, with the cuto�s 80
and 25 for TEMP, 70 and 10 for DEW, determined
(arbitrarily) as the 95th and 5th percentiles of the
empirical distribution for each variable. All of these
variables were considered at lag 0 (i.e. today's
value) as well as daily lags 1 through 4; VAR

j

means variable VAR lagged j days. We followed the
policy that if a squared variable was included in the
model then the corresponding linear variable would
be included as well; otherwise, any combination
of meteorological variables is permitted. Variable
selection was by backward selection with a .05
signi�cance level determining whether or not a
particular variables was included in the �nal model.
After following this strategy the following variables
were included: TEMP1, TEMPSQ1, HITEMP0,
HITEMP1, HITEMP2, HITEMP4, DEW0, DEW1,
DEW2, DEW4, DEWSQ0, DEWSQ1.

3.4 Autocorrelation and overdispersion

Some earlier studies, notably Samet et al. (1995),
considered the e�ects of autocorrelation in Philadel-
phia. In our analysis, based on a di�erent model
of the long-term time trend, the observed autocor-
relations of the residuals are not signi�cant when
compared with their expected values under the
independent-errors assumption.

Overdispersion may be said to exist when the vari-
ance of

p
Y is greater than 0.25 (its approximate

value when Y is Poisson). For us, the sample vari-
ance is .276, or about a 10% overdispersion. The
overdispersion is somewhat greater than that re-
ported by Samet et al. (1997), who suggested it was
about 5%, but overall con�rms that there is some,
though not very strong, overdispersion in this data
set.

3.5 Modeling time-dependent e�ects of air

pollution

One issue that complicates the interpretation of
an air pollution{mortality link is that the time-
dependence of the e�ect | in other words, how
the inuence of a high-pollution event is spread over

the several days following the event | is unknown.
Past studies have employed di�erent combinations of
lagged pollution variables, either considering single-
day measurements and their lagged values, or av-
erages of between two and �ve daily values, again
with lags. This creates diÆculties over such issues
as how to compensate the resulting inferences for the
selection e�ect involved in picking out the pollution-
based variable with the largest absolute value or the
largest statistical signi�cance. Most current stud-
ies have restricted attention to variables of lags 0{4
though some have suggested that e�ects are persis-
tent over much longer time scales (Zeger et al. 1999).

Our approach is to assume that the form of the
dose-response curve following a high-pollution event
is unknown, but restricted to the m days follow-
ing the event (including the day of the event itself).
Renumbering coeÆcients if necessary, we may as-
sume that �11; :::; �1m are the coeÆcients of the pol-
lution variable in the regression (1) at daily lags 0,
1, ..., m � 1. Within such a model, if the level of
a pollutant rose by an amount � uniformly on all
days, the net e�ect on Efy

t
g would be an increase

of �
P

m

1 �1j . Thus there is a reason for considering
the sum of coeÆcients,

P
m

1 �1j , as the \parameter
of interest", however we model the individual �1j
coeÆcients.

In the current version of the study, we simplify
this further by assuming �11 = ::: = �1m, though
within our empirical Bayes framework, it should also
be possible to consider cases in which �11; :::; �1m are
di�erent, and we aim to consider this in future work.

3.6 Least squares results

To the meteorological and long-term trend models
identi�ed in sections 3.2 and 3.3, we now add various
combinations of pollutant variables, using ordinary
least squares to �t the models. The �ve pollutants
were considered, for each of m = 1, 2 and 3, where
for m > 1 the average of lagged days 0, 1,...,m � 1
was taken to de�ne the pollutant variable. If any of
the m individual days was missing, we de�ned the
m-day average to be missing also. The pollutants
were added both one at a time, and all together. t
statistics were formed by dividing each parameter
estimate by its standard error. Table 2 gives the
parameter estimates and t statistics for each model
considered.

It can be seen that signi�cant values have been
obtained for each of the pollutants when they are
added one at a time, but that the results are far
less clear-cut when all the pollutants are included
simultaneously. The table also shows the sensitivity



Model TSP SO2 NO2 CO O3

S1 0.081 0.057 0.063 0.049 0.035
(3.5) (3.8) (2.2) (2.2) (2.0)

S2 0.078 0.062 0.050 0.044 0.058
(2.6) (3.3) (1.4) (1.6) (2.5)

S3 0.036 0.045 0.036 0.036 0.075
(1.0) (2.0) (0.9) (1.1) (2.7)

A1 0.048 0.042 -0.050 0.027 0.030
(1.4) (2.0) ({1.1) (0.9) (1.6)

A2 0.048 0.054 {0.082 0.026 0.052
(1.1) (2.0) ({1.5) (0.7) (2.1)

A3 {0.033 0.060 {0.045 0.030 0.081
({0.6) (1.9) ({0.7) (0.7) (2.7)

Table 2: Parameter values and t statistics (in paren-
theses) when each pollutant is entered singly (mod-
els S1, S2, S3) and when all are entered together
(A1, A2, A3); models S1, A1 use m = 1, S2, A2 use
m = 2 and S3, A3 use m = 3.

of the results to m, the number of lags included in
the model. Overall, the results are not in conict
with those of Samet et al. (1997), but they reinforce
the sensitivity of the results to model assumptions.

3.7 Empirical Bayes results

We now consider how these results are a�ected by
the di�erent kinds of empirical Bayes analysis dis-
cussed in section 2. Our main purpose in the current
study is to use empirical Bayes analysis to combine
the �ve pollutants, though as already mentioned, in
principle the method could be applied to more gen-
eral models such as those involving variable coeÆ-
cients for each lag.

Suppose all �ve pollutants are put into the model
at the same time. We consider four variants on the
analysis: (a) least squares estimates, as given in sec-
tion 3.6; (b) the ridge regression estimates with pa-
rameter c determined by type II maximum likeli-
hood; (c) the EDF estimates de�ned by a combina-
tion of (10) and (12) | in this case (12) is used to
determine the mass points while the ordering in (10)
is used to associate each variable with a correspond-
ing mass point; (d) the GRR estimates de�ned in
section 2.6. For the single-day values (m = 1 in Ta-
ble 2) the results of this analysis are shown in Fig.
1. For �ve-day averages (m = 5), they are in Fig. 2.
In both cases, the di�erent forms of empirical

Bayes analysis have had the e�ect of shrinking the
least squares estimates, but we do not feel con�dent
in labelling any one of the four analyses as the single
\best" analysis. The main message of the analysis
is to highlight how much individual parameter esti-

mates are sensitive to the choice among these di�er-
ent methods of estimation. However some features
are persistent across di�erent analyses: for example,
in Fig. 1 the NO2 coeÆcient is negative for all four
analyses, while in Fig. 2 it appears that CO is the
variable with the largest coeÆcient even though the
e�ect is markedly reduced in all three versions of
empirical Bayes analysis.

••• • •

Parameter estimate 
 

-0.04 -0.02 0.0 0.02 0.04

• •• • •

• •• • •

• •• ••

OLS

EDF

Ridge

GRR

NO2

SO2
CO O3

TSP

Fig. 1. Plots of the regression coeÆcients for �ve
pollutants, current day's value of pollutants. From
top to bottom: Least squares estimates, EDF es-
timates, ridge regression estimates, GRR estimates.
The solid lines between the plots connect points cor-
responding to the same element.
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Fig. 2. Similar to Fig. 1, but based on �ve-day
averages of pollutant variables.

Apart from the choice among di�erent forms of
empirical Bayes analysis, the preceding conclusions
suggest two questions for further study. First, can
we say anything about the choice of m? Second,
what about the \signi�cance" of di�erent pollu-
tants?
We approach the �rst question from the point of

view outlined in section 2.7. A prior distribution



was imposed on the order m of the model by speci-
fying M = 5 (the largest value of m permitted) and
p
m
= 1

5
for m = 1; :::; 5. The ridge regression analy-

sis was then rerun with c selected by type II MLE,
separately for each m. As noted already in section
2.5, a more comprehensive Bayesian analysis would
allow also for a prior distribution on c, but we have
not implemented that yet.

For this analysis, the posterior probabilities q
m
=q

�

described in section 2.7 are .23, .17, .17, .28, .15 for
m = 1; 2; 3; 4; 5. Evidently, the data do not pro-
vide much evidence to discriminate among the dif-
ferent values of m. For studying statistical signi�-
cance, we have computed the posterior probability
that �1j < 0 for each parameter of interest. This can
be considered the Bayesian equivalent of the frequen-
tist p-value for a one-sided test of signi�cance. These
probabilities for each of the TSP, SO2, NO2, CO and
O3 variables are .29, .15, .59, .30, .11. There does
not appear to be much evidence for \signi�cance" of
any of the �ve variables.

There are other versions of the analysis, which
will be reported in more detail elsewhere, and some
of these do show a signi�cant e�ect for either SO2

or O3, but none of our present analyses leads to a
signi�cant result for TSP when considered in com-
bination with other pollutants.

4. Analysis of data from Phoenix,

Arizona

The data from Phoenix comprise three years' of me-
teorology, air pollution and mortality data covering
the period February 1995{December 1997. The in-
terest in this series is that it is one of the few cur-
rently extant series to include daily measurements
of both PM10 and PM2:5, and also that there are a
number of breakdowns of the air pollution data in-
cluding analysis of 44 chemical elements (excluding
carbon) that are constituents of PM2:5. The com-
parison of regression results for PM10 and PM2:5 is of
particular interest in the light of the EPA's decision
in 1997 to create a new tightened standard based
on PM2:5 while leaving the earlier PM10 standard
intact.

4.1 Data description

Meteorology and air pollution data were obtained
from the particulate matter research monitoring
platform in Phoenix, which is one of three that
has been established by the EPA's National Ex-
posure Research Laboratory at Research Triangle

Var. Mean SD 25% Median 75%

Mort 15.4 4.4 12 15 18
MinT 17.5 8.0 10.8 16.8 24.7
MaxT 29.4 8.2 22.6 29.8 36.7
SH 8.51 4.52 5.3 7.0 10.5
PMC 33.5 17.4 22.5 30.2 40.8
PMF 13.0 7.1 8.2 11.4 16.7

Table 3: Summary statistics for Phoenix: mortality
age 65+, daily minimum and maximum temperature
(oC), speci�c humidity (g/kg), coarse PM (PMC) in
(�g/m3), �ne PM (PMF) in (�g/m3).

Park, NC. Additional meteorological data were ob-
tained from the archives of the National Climatic
Data Center.
Daily readings (averaged from 24 hourly read-

ings) were obtained of PM10 and PM2:5 values mea-
sured by a Tapered Element Oscillating Microbal-
ance (TEOM) monitor. (There are also some days
with PM1 readings | limit 1 micron | but there are
too many missing values to make it possible to in-
corporate this variable into the analysis.) The data
set also contains the results of an x-ray spectrometry
analysis of PM2:5 collected on a Teon �lter using a
dual �ne particle sequential sampler (DFPSS) ma-
chine. The spectrometry gives the measurements of
44 selected elements ranging in atomic number from
sodium (NA) to lead (PB).
Mortality data are similar in format to those used

for Philadelphia, and were obtained from the Ari-
zona Health Services Department. We restricted
attention to nonaccidental deaths in the city of
Phoenix in the 65+ age group, though breakdowns
into age groups, cause of death, etc., are available.
Table 3 gives selected summary statistics for this

data set.

4.2 Time-trend and meteorological vari-

ables

As with Philadelphia, the basic regression analysis
involves a linear model of the form (1) with y

t
de-

�ned as the square root of daily death counts. Time
trends were again modeled through a B-spline ba-
sis representation, using 18 knots (one for each two
months of data).
The meteorological variables considered were

daily temperature maxima and minima, and spe-
ci�c humidity. The selected model contained the
following meteorological variables, in addition to
the 18 B-spline terms for trend: TMAX2, TMIN2,
THIGH1, SH3, SH4 and SHSQ4. Here TMAX and
TMIN are daily maximum and minimum tempera-



i j PMC t PMF t

1 0 6 0.4 {10 {0.3
1 1 19 1.3 0 0.0
1 2 39 2.7 34 0.8
1 3 13 0.9 52 1.3
1 4 1 0.1 22 0.6
2 0 21 1.1 {9 {0.2
2 1 47 2.5 22 0.5
2 2 39 2.2 62 1.3
2 3 10 0.6 52 1.1
3 0 49 2.2 10 0.2
3 1 49 2.4 53 1.0
3 2 32 1.7 67 1.2

Table 4: PMC and PMF coeÆcients for di�erent
averaging lengths i and lags j; cols. 3 and 5 give the
coeÆcient �104, cols. 4 and 6 give the t values.

ture; THIGH=(TMAX{30)+; SH is speci�c humid-
ity; SHSQ=SH2; and suÆces denote lags, as previ-
ously.

4.3 Particulate matter e�ects

We now add various PM variables, one at a time,
to the time trend and meteorology model. We con-
sidered both coarse PM or PMC, de�ned as the dif-
ference between PM10 and PM2:5, and �ne PM or
PMF, the same as PM2:5. For each of the two vari-
ables, we considered various exposure measures in-
dexed by i and j where i is the number of days av-
eraged and j is the lag. For example, i = 3; j = 1
is the three-day average lagged one day, or in other
words, the average of lags 1, 2 and 3. In this case,
adopting a di�erent convention from Philadelphia,
the i-day average is recorded as missing only if all
i days are missing; in other cases, we average over
available lags. Each of these 24 PM variables was
added to the model in turn, and we computed both
the coeÆcient and the t statistic using ordinary least
squares. Results are in Table 4.

For PMC, several of the values are statistically
signi�cant | among the single-day (i = 1) values,
the two-day lagged value is particularly signi�cant,
and among the coeÆcients based on averaged val-
ues, any average which includes the two-day lag is
signi�cant. On the other hand, for PMF, none of
the values is statistically signi�cant.

It is widely believed that PMF is more damag-
ing to human health than PMC; see for example
Schwartz et al. (1996). The results given here sug-
gest that if there is any e�ect, it is more likely to be
associated with PMC.

4.4 Inuence of individual elements

A test has also been made for the e�ects of mortal-
ity corresponding to each of 42 separate elements
which are constituents of PM2:5. (Two elements
were omitted because they were not available for
most of the days.) Individual variables were stan-
dardized to have mean 1 as described in section 2.3.
This analysis is based on about 300 days' data and
the meteorological part of the model was re�tted to
account for the reduced length of the available series.
Three analyses of the elemental variables were per-
formed: (a) least squares analysis introducing one
variable at a time, (b) least squares analysis includ-
ing all variables together, (c) a ridge regression ap-
proach. In this case an ad hoc approach was taken
to the ridge constant c since the type II MLE was
in�nite (recall discussion of this point in section 2.5).
The three sets of parameter values are illustrated in
Fig. 3. For this analysis, it can be seen that the
least squares analysis based on all variables together
produces occasional wild estimates (e.g. those for
SI, CA), but the ridge estimates are much more sta-
ble. The analysis does not highlight any particular
elements as having a strong e�ect, but this is a small
data set and more studies of this nature are needed.

5. Conclusions

The problem of handling multiple pollution vari-
ables, whether they be di�erent lags of the same pol-
lutant, di�erent constituents of particulate matter,
or co-pollutants such as SO2 and ozone, is a funda-
mental one in any epidemiological study of the re-
lationship between air pollution and human health.
We have argued that, like much other work in this
�eld, an empirical Bayes approach o�ers a suitable
statistical framework for dealing with these prob-
lems.

Our re-analysis of the Philadelphia data con�rms
that although there is general evidence of an associ-
ation between air pollution and mortality, it is ex-
tremely diÆcult on the basis of this data set to pin
it down to a speci�c variable. This conclusion is
not substantially di�erent from that of Samet et al.
(1997), but the attempt to re-examine the question
using empirical Bayes analysis has not clari�ed the
situation, and if anything has only reinforced the
uncertainty of the conclusions.

The Phoenix data set is new, and of interest be-
cause it allows for a direct comparison between the
e�ects of PMC and PMF. The evidence presented
here is that if there is any e�ect at all, it is due to
the coarse and not the �ne particles, though having



emphasized the tenuousness of conclusions about a
causal e�ect in other data sets, it would be remiss of
us not to point out that similar caution is appropri-
ate in the interpretation of this one, given the short
length of the data set.
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Fig. 3. Estimates and 95% con�dence bands
obtained for each of 42 elements. For each element,
three estimates are shown. Left-hand: OLS estimate
when variables are added one at a time to the model.
Middle: OLS estimate when variables are added all
together. Right-hand side: Ridge estimates.

Finally, our analysis of the 42 constituent elements
of PM2:5 in Phoenix has failed to yield any evi-
dence that any single element has a signi�cant e�ect,
though this was based on an even shorter data set,
and obviously there are many more possibilities for
the study of this question.
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