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This comment presents some new time series analyses of the ozone-mortality association, both 

based on the well-established NMMAPS dataset, and a new 2000-2012 dataset from California. 

These results are relevant to the proposed changes in the ozone standard for several reasons: time 

series analyses are by far the most widely studied and definitive results relating ozone directly to 

mortality, and have been extensively used in the EPA’s own Regulatory Impact Analysis. Our 

overall conclusion is that the results are substantially dependent on various subjective choices of 

data and statistical models, and therefore, their use to support the proposed new standard must still 

be regarded as tentative. 

 

Introduction and Summary 

 

The papers by Bell and co-authors (2004, 2006) were the first multi-city studies of the relationship 

between ozone and short-term mortality, using the National Morbidity, Mortality and Air Pollution 

(NMMAPS) dataset. This dataset consisted of daily death counts and many associated covariates 

(including meteorological and air pollution covariates) for 108 US cities for 5,114 days, from 

January 1, 1987 through December 31, 2000. It remains by far the largest air pollution dataset to 

have been distributed publicly and widely analyzed by many different authors. 

 

Smith et al. (2009) re-analyzed the NMMAPS dataset and critically examined several of the 

conclusions relating ozone and short-term mortality. Amongst other things, this paper recast all the 

results in terms of daily maximum 8-hour average ozone, which is the definition of ozone used in 

the current EPA standard. In contrast, the earlier papers of Bell et al. used 24-hour average ozone. It 

is not the intention of the present note to review this material in detail, but we highlight two results 

as background for the discussion that follows. First, Figure 1 of the present note (reproducing 

Figure 4 of Smith et al.) shows the variation of ozone-mortality coefficients by city, as well as 

Bayesian estimates under two priors that were used to combine the results across cities: the 

“national prior” which treats all cities in the entire database as drawn from a single common 

distribution, and the “regional prior” which treats cities as from a common distribution within each 

of seven regions. The figure highlights the very great variation in the raw estimates, and shows how 

even the Bayesian posterior estimates are sensitive to the choice of prior. Second, Figure 2 of the 

present note (Figure 6 of Smith et al.) is a smoothed map of the ozone-mortality coefficients as they 

vary over the country, highlighting the systematic variation over space – in particular, it appears 

that the ozone-mortality relationship is highest in the north-east of the country (with a few high 

spots elsewhere, e.g. Texas) while there are many parts of the country for which the coefficient is 

much smaller and arguably insignificant. 

 

Some time after the publication of Smith et al. (2009), scientists from the EPA requested a file of 
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the city-specific coefficients, which was provided. In the course of preparing the present note, this 

file has been placed online, as well as the 8-hour ozone data (which was derived from NMMAPS 

data, but not a part of the original NMMAPS dataset). See 

www.unc.edu/~rls/ExplanatoryNote.docx for an explanatory note and links to both the 8-hour 

ozone and mortality coefficients data. These analyses have been heavily cited in the proposed 

rulemaking documents, especially in the Regulatory Impact Analysis. It is therefore especially 

important to understand still further how sensitive such results are to both model specification and 

data. The present note gives further analyses that have been completed within the last few months, 

both of NMMAPS and other datasets. Papers based on these analyses are currently being prepared 

for submission to refereed journals. 

 

Major points of the current analyses include: 

 

1. New datasets from California, covering the period 2000-2012, do not show any dependence 

between short-term mortality and either ozone or PM2.5. The mortality data were obtained by 

Dr. Stan Young and will be both made publicly available and analyzed further in a 

forthcoming paper of Lopiano, Smith and Young (2015). At the present time, we do not 

have post-2000 data from other states. 

2. The results for 2000-2012 California data are in fact consistent with the results from the 

1987-2000 NMMAPS dataset, restricted to the state of California. To establish this point, 

we have repeated the methods used for the 2000-2012 California dataset (which used daily 

maximum temperature, daily minimum temperature and daily mean relative humidity as 

meteorological covariates, different from those used in most published NMMAPS analyses) 

and applied them to the earlier NMMAPS data. This shows that there is no overall 

contradiction with previously published results, but this naturally raises the question of 

whether other NMMAPS results would still hold when applied to more recent data. 

3. We have also studied the possibility of nonlinear concentration-response curves more 

systematically than in earlier NMMAPS papers. For the post-2000 California data, results 

based on nonlinear concentration-response functions show essentially the same result as for 

linear concentration-response functions – no overall effect. For the NMMAPS data, the 

results also do not show a consistent effect across regions, the “national average” result 

being the only one that shows an increasing and statistically significant mortality risk across 

a wide range of ozone levels. We have also examined the possible role of either confounding 

or effect modification by PM10 in these analyses. (Some analyses have also been done with 

other criteria pollutants as the possible confounder, but these lead to similar conclusions.)  

The results do not contradict the claims of Bell et al. (2004, 2007), who stated that 

confounding by PM10 does not play a major role in the ozone-mortality relationship. 

However, we have also attempted an effect modification analysis by essentially splitting the 

data for each city into two parts, either below or above a pre-defined PM10 threshold, and 

examining the ozone-mortality association separately for each part. The results for this 

analysis are mixed: the basic problem is that as soon as one attempts any analysis beyond 

the simple national-average ozone-only analysis, the confidence bands become too wide to 

make any definitive conclusions. 

 

In the author’s view, the robustness of the ozone-mortality association (to changes in the time and 

spatial region covered by the data, to the covariates included in the analysis, and to the form of the 

statistical model) is still far from well-established. Therefore, claims about the benefits of the 

proposed change in the standard are speculative. 

 

http://www.unc.edu/~rls/ExplanatoryNote.docx
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Figure 1 (Figure 4 of Smith et al., 2009). Raw city-specific estimates (triangles), posterior estimates 

under the “regional” prior (squares) and posterior estimates (circles) and 95% posterior intervals 

under the “national” prior, for the ozone-mortality coefficient based on 8-hour ozone. 
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Figure 2 (Figure 6 of Smith et al., 2009). Map of spatially dependent ozone-mortality coefficients 

for 8-hour ozone (all-year data), 8-hour ozone (summer data), 24-hour ozone (all-year data) and 1-

hour ozone (all-year data).  

 

The remainder of this discussion presents an outline of the new analyses that support the above 

points. 

 

Time Series Analysis of California Mortality Data 

 

The time series model is adapted from models previously used for the National Morbidity, 

Mortality and Air Pollution (NMMAPS) data series, see in particular Dominici et al. (2003), Bell et 

al. (2004) and Smith et al. (2009). The code used for the results in the present paper is at 

www.unc.edu/~rls/EpiTimeSeriesCodeRLS.txt. 

 

The basic model is of the form 

 

Log(µt) = Overall Mean + DLM(l1,…,lk) + s(t, nyr*df0) + DOW  

                 + s(M1(t); df1) + s((M1(t-1) + M1(t-2) + M1(t-3))/3; df2)  

                 + … + s(Mp(t); df1)+ s((Mp(t-1) + Mp(t-2) + Mp(t-3))/3; df2)           (1) 

 

where 

 

µt is expected number of deaths on day t; 

 

DLM(l1,…,lk) refers to a (linear) distributed lag model for the air pollution variable; this 

includes regression terms β1(X(t- l1) + X(t- l2) + … + X(t- lk))/k + β2{ X(t- l2) - (X(t- l1) + 

X(t- l2) + … + X(t- lk))/k} + … + βk{ X(t- lk) - (X(t- l1) + X(t- l2) + … + X(t- lk))/k} where 

the lead coefficient β1 represents the mean rise in mortality per one unit rise in air pollution 

X, distributed over lags l1,…,lk; 

http://www.unc.edu/~rls/EpiTimeSeriesCodeRLS.txt
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s(t, nyr*df0) refers to a natural spline on time variable t over nyr years with df0 degrees of 

freedom per year; this represents the long-term trend (including seasonal component); 

 

DOW is a day of week component (treated as a factor variable); 

 

s(M1(t); df1) represents a nonlinear trend on current-day value of met variable M1 with df1 

degrees of freedom; 

 

s((M1(t-1) + M1(t-2) + M1(t-3))/3; df2) represents a nonlinear trend on the average of the 

three previous days of met variable M1 with df2 degrees of freedom; 

 

other met variables M2,…,Mp are treated similarly to M1; 

 

days with missing data are omitted from the analysis; 

 

the model is fitted as a generalized linear model with log link and quasipoisson mean-

variance structure; this is similar to assuming a Poisson distribution but with an additional 

parameter representing overdispersion. 

 

In addition to fitting model (1) with all the variables, we have also fitted the model without the air 

pollution component and dropping some of the meteorological terms. A likelihood ratio test is 

conducted when each of the terms from s(M1(t); df1) to s((Mp(t-1) + Mp(t-2) + Mp(t-3))/3; df2) is 

dropped; this is an additional check that the selection of meteorological terms is appropriate.  

 

For the California analysis, we have used three meteorological variables: daily maximum 

temperature, daily minimum temperature and daily mean relative humidity. Previous NMMAPS 

studies including Smith et al (2009) have used two meteorological variables, daily mean 

temperature and dewpoint, but otherwise the same model form as above. For the degrees of 

freedom, in previous studies df0 has been typically taken between 7 and 12, df1 and df2 between 3 

and 6; we have varied these by trial and error to understand the sensitivity of the analysis to these 

choices. 

 

The most critical component of the model (1) is the selection of lags l1,…,lk to represent the air 

pollution component. The NMMAPS analyses in Bell et al. (2004) and Smith et al. (2009) used lags 

0, 1, 2,…,6 (in some cases with an additional refinement, the constrained distributed lag model in 

which some of the coefficients β2,…,βk are constrained to be equal; however, this usually has only 

minor impact on the important coefficient β1). Other common approaches use any of lags 0, 1, 2 in a 

single-lag model, or averages over any combination of lags 0, 1, 2, 3. For the present study, we have 

tried different combinations of lags to look for the lag combination that best represents the air 

pollution effect. We believe this approach to be justified in view of the weak evidence for any air 

pollution effect in these dataset; however, in view of the selection bias inherent in such an approach, 

we caution against over-interpretation of such results, especially in cases where the p-value is over 

0.01 or the result highly depend on the selection of a particular combination of lags.  
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Figure 3: Map of California Air Basins (Source: Webpage of the California Air Resources Board) 

 

South Coast Air Basin 

 

The approach outlined in the previous section is applied to data from each of eight California air 

basins (Fig. 1). Because they are the two most populated air basins, we concentrate initially on the 

South Coast air basin (which includes Los Angeles, Orange, Riverside and San Bernardino 

Counties) and the San Francisco Bay air basin (San Francisco, Marin, Sonoma, Napa, Solano, 

Contra Costa, Alameda, Santa Clara and San Mateo counties). A map of all the air basins is in 

Figure 3. For the response variable, we use total non-accidental mortality among people aged 65 

and over. 

 

Fitting the meteorological model alone, in Table 1 we tabulate the p-value associated with dropping 

each of the six terms in turn. Five of the meteorological variables are very highly significant; the 

only exception is current-day relative humidity. This result is based on the particular choices df0=7, 

df1=df2=6, but the overall conclusion is robust against alternative values of those three degree of 

freedom parameters. 

 

 

Variable Lags p-value 

   Daily Max Temperature Current day 0 <1 e-16 

Daily Max Temperature Mean of 1,2,3 4.6 e-7 

Daily Min Temperature Current day 0 2.5 e-4 

Daily Min Temperature Mean of 1,2,3 2.4 e-5 

Mean Daily Relative Humidity Current day 0 0.18 

Mean Daily Relative Humidity Mean of 1,2,3 1.5 e-10 

 

Table 1: Statistical significance of meteorological components: based on model (1) without air 

pollution component and with df0=7, df1=df2=6, fitted to nonaccidental mortality for ages 65 and 

up, South Coast air basin. 

 

In subsequent analyses, we have retained all six meteorology components; this is to ensure 
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consistency across different air basins and to avoid the analysis being biased by overuse of 

statistical significance tests; however, Table 1 is evidence that we have identified appropriate 

meteorological variables for the overall analysis. 

 

We now consider addition air pollution variables to the meteorological model in Table 1. Initially, 

we concentrate on ozone. Table 2 shows the coefficient estimates, standard error (SE), t-value and 

p-value associated with ozone at various combination of lags. The units here are percent rise in 

mortality per 10 ppb rise in ozone. The strongest positive coefficient is based on lags 0, 1, 2 and 3, 

for which the model predicts a 0.1% rise in mortality per 10 ppb rise in ozone. However, neither 

this nor any of the other values in the table comes anywhere close to being statistically significant. 

This is for 13 years of data over one of the most densely populated areas of the US – if there is an 

ozone-mortality effect in California, we ought to see it here. 

 

Lags Included Estimate SE t-value p-value 

     0 0.0870 0.1135 0.77 0.44 

1 -0.0472 0.1136 -0.42 0.68 

2 0.0471 0.1141 0.41 0.68 

0,1 0.0266 0.1315 0.20 0.84 

1,2 0.0002 0.1330 0.00 1.00 

0,1,2 0.0825 0.1507 0.55 0.58 

0,1,2,3 0.1222 0.1673 0.73 0.46 

0,1,2,3,4 0.0941 0.1802 0.52 0.60 

0,1,2,3,4,5 0.0096 0.1905 0.05 0.96 

0,1,2,3,4,5,6 -0.0479 0.1992 -0.24 0.81 

 

Table 2: Statistical significance of ozone component with various combinations of lags: based on 

model (1) df0=7, df1=df2=6. Estimate is percent rise in mortality for 10 ppb rise in ozone. South 

Coast air basin; response variable is non-accidental mortality aged 65 and over. 

 

The model fit is illustrated pictorially in Figure 4. In this plot, we show residuals from the parts of 

the model that do not include air pollution (long-term trend, day of week and meteorology). If there 

was a strong ozone effect, this ought to be apparent from the plot: it is not. This is reinforced by the 

fitted straight line and associated confidence bands, showing very little dependence on ozone. 
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Figure 4. South Beach air basin. Blue dots: residuals from the model that includes long-term trends, 

day of week and meteorology, plotted against the air pollution variable (ozone). Red solid and 

dashed lines: implied change of relative risk with respect to ozone level 0.075 ppm (the current 

ozone standard), with pointwise 95% confidence bands. 

 

 
Figure 5: (Left) Plot of daily deaths in South Coast air basin. The seasonal cycle is evident. (Right) 

Plot of DFBETAs for the leading air pollution coefficient. The two circled points are the ones with 

the most extreme value of DFBETAs, implying most influence on the air pollution coefficient. 

 

Figure 5 illustrates another kind of plot. The left hand plot is a plot of the raw daily mortality data 

against time: this makes obvious the very strong seasonal effect. The right hand plot is for the 

regression diagnostic DFBETAS (Belsley et al., 1980) which is a common diagnostic for 

determining the influence of each individual observation on any of the fitted coefficients. In this 
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case, DFBETAS is plotted for the main air pollution regression coefficient of interest. The most 

extreme observations, in terms of their influence on the air pollution coefficient, are observation 

626 at the lower and observation 2026 at the upper end (circled on plot). This suggests trying to 

refit the model with either of these observations omitted. If this is done, the regression coefficient 

0.1222 reported in Table 2 changes to 0.1512 if observation 626 is omitted and 0.0879 if 

observation 2026 is omitted; the standard error remains at about 0.167 in all three cases. Thus, 

although the regression coefficient does indeed change if one of these influential observations is 

omitted, the coefficient is still not large enough to produce a statistically significant result. 

 

The same analysis was tried using PM2.5 in place of ozone, with results shown in Table 3. In this 

case, several of the estimates appear to be statistically significant with a p-value <0.05 (smallest 

value 0.017), but all the statistically significant values are negative, which is not biologically 

plausible. We conclude that either the small p-values are an artifact of the selection effect already 

mentioned, or there is some other biological mechanism, such as confounding by some other 

pollutant, that explains these results. 

 

 

Lags Included Estimate SE t-value p-value 

          

0 0.1261 0.0998 1.26 0.21 

1 -0.1966 0.0990 -1.99 0.05 

2 -0.2121 0.0995 -2.13 0.03 

0,1 -0.0425 0.1144 -0.37 0.71 

1,2 -0.2720 0.1151 -2.36 0.018 

0,1,2 -0.1133 0.1294 -0.88 0.38 

0,1,2,3 -0.1636 0.1409 -1.16 0.25 

0,1,2,3,4 -0.1611 0.1499 -1.07 0.28 

0,1,2,3,4,5 -0.2609 0.1582 -1.65 0.10 

0,1,2,3,4,5,6 -0.2435 0.1659 -1.47 0.14 

 

Table 3: Statistical significance of PM2.5 component with various combinations of lags: based on 

model (1) df0=7, df1=df2=6. Estimate is percent rise in mortality for 10 µg/m
3
 rise in PM2.5. South 

Coast air basin; response variable is non-accidental mortality aged 65 and over.  

 

In these analyses, the overdispersion parameter was of the order of 1.07 – in other words, the 

variance of the mortality variables is inflated by a factor of 1.07 compared with the Poisson 

distribution. This is typical for this kind of analysis and does not indicate a problem. A much larger 

overdispersion parameter could indicate some important missing covariates. 

 

San Francisco Bay Air Basin 

 

So far, we have only considered one air basin. The second most populated is San Francisco Bay, 

which has substantially different weather patterns and demographics from the Los Angeles area. 

Therefore, the entire analysis has been repeated for this air basin, as a test of how robust the 

analyses are for different regions of the state. 

 

Table 4 shows the statistical significance of the individual meteorology components, analogous to 

Table 1 for the South Coast air basin. The main difference from Table 1 is that the component due 

to relative humidity is not statistically significant. (Although not reported in the table, if both 

relative humidity components – current day and the average of lags 1,2,3 – are dropped together, 
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rather than one at a time, we also do not get a statistically significant component due to relative 

humidity.) In the following analyses, to maintain consistency of analysis methods across different 

air basins, the main results are still reported including relative humidity, but to assess the sensitivity 

to this component, some of the analyses have been repeated omitting relative humidity altogether. 

 

Variable Lags p-value 

      

Daily Max Temperature Current day 0 9.05E-11 

Daily Max Temperature Mean of 1,2,3 0.0071 

Daily Min Temperature Current day 0 0.0019 

Daily Min Temperature Mean of 1,2,3 0.043 

Mean Daily Relative Humidity Current day 0 0.41 

Mean Daily Relative Humidity Mean of 1,2,3 0.32 

 

Table 4: Statistical significance of meteorological components: based on model (1) without air 

pollution component and with df0=7, df1=df2=6, fitted to nonaccidental mortality for ages 65 and 

up, San Francisco Bay air basin. 

 

Table 5 shows the results when ozone is added to the analysis. As with our earlier analyses for the 

South Coast air basin, none of the estimates of the ozone effect at various lags is statistically 

significant at the 0.05 level. However, two of the analyses (with lag 0 alone, and with lags 0 and 1 

together) are statistically significant with a p-value of about .02 if the relative humidity component 

is omitted. This result illustrates the principle that if enough different models are tried, it is usually 

possible to find some model that gives a statistically significant result: it does not imply that the 

result is significant in any practical sense. It should also be noted, however, that all the coefficients 

of models that include lag 0 are similar in magnitude (between 0.3 and 0.6): the variation in p-

values is mostly due to their standard errors. 

 

Lags Included RH included? Estimate SE t-value p-value 

            

0 yes 0.4464 0.2471 1.81 0.071 

1 yes 0.1889 0.2413 0.78 0.43 

2 yes -0.1560 0.2442 -0.4 0.52 

0,1 yes 0.4909 0.3030 1.62 0.11 

1,2 Yes 0.0225 0.2947 0.08 0.94 

0,1,2 Yes 0.3281 0.3502 0.94 0.35 

0,1,2,3 Yes 0.4210 0.3927 1.07 0.28 

0,1,2,3,4 Yes 0.4716 0.4167 1.13 0.26 

0,1,2,3,4,5 Yes 0.4703 0.4310 1.09 0.28 

0,1,2,3,4,5,6 Yes 0.3325 0.4448 0.75 0.45 

0 No 0.4838 0.2121            2.28 0.023 

0,1 No 0.5948 0.2604 2.28 0.022 
 

Table 5: Statistical significance of ozone component with various combinations of lags: based on 

model (1) df0=7, df1=df2=6. Relative humidity is omitted from some of the analyses. Estimate is 

percent rise in mortality for 10 ppb rise in ozone. San Francisco Bay air basin; response variable is 

non-accidental mortality aged 65 and over. 

 

Table 6 shows the corresponding results for PM2.5, where again relative humidity has been omitted 
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from some of the analyses to illustrate the sensitivity to this component. Our conclusions are 

similar: some rows of this table show a statistically significant effect with a p-value of the order 

0.02, but taking account of the number of models examined in order to achieve this result, it is 

unlikely to be of practical significance. 

 

Lags Included RH included? Estimate SE t-value p-value 

            

0 Yes 0.3031 0.2362 1.28 0.20 

1 Yes 0.1235 0.2373 0.52 0.60 

2 Yes 0.3769 0.2312 1.63 0.10 

0,1 Yes 0.3968 0.2700 1.47 0.14 

1,2 Yes 0.4614 0.2679 1.72 0.09 

0,1,2 Yes 0.5903 0.3067 1.92 0.05 

0,1,2,3 Yes 0.5688 0.3297 1.72 0.08 

0,1,2,3,4 Yes 0.5042 0.3482 1.45 0.15 

0,1,2,3,4,5 Yes 0.5500 0.3634 1.51 0.13 

0,1,2,3,4,5,6 Yes 0.4884 0.3767 1.30 0.19 

0,1,2,3 No 0.5712 0.3123 1.83 0.07 

0,1,2,3,4 No 0.6518 0.3341 1.95 0.05 

0,1,2,3,4,5 No 0.8169 0.3535 2.31 0.021 

0,1,2,3,4,5,6 No 0.7737 0.3702 2.09 0.037 

 

Table 6: Statistical significance of PM2.5 component with various combinations of lags: based on 

model (1) df0=7, df1=df2=6. Relative humidity is omitted from some of the analyses. Estimate is 

percent rise in mortality for 10 µg/m
3
 rise in PM2.5. San Francisco Bay air basin; response variable 

is non-accidental mortality aged 65 and over. 

 

To give some pictorial assessment of the model fit and its sensitivity, in this case, we have chosen 

the model with lags 0,1,2,3,4,5 and no RH. Once again, we should point out that the interpretation 

of such a model must take account of the deliberate selection of the model to give the largest air 

pollution effect – we have followed this strategy in order to reinforce the difficulty of finding any 

model with a truly significant PM2.5 coefficient. 

 

The figures analogous to Figures 4 and 5 are now Figures 6 and 7. Figure 6 illustrates that even 

with this deliberate choice of model, the increase in modeled relative risk over the range of the data 

is slight. The DFBETAs plot on the right side of Figure 7 identifies observations 373 and 1071 as 

most influential; when these are omitted, the regression coefficient changes from 0.8169 to 0.8847 

(observation 373 omitted) or 0.7308 (observation 1071 omitted). In neither case does the new 

regression coefficient change any of our substantive conclusions about the data. 
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Figure 6. San Francisco Bay air basin. Blue dots: residuals from the model that includes long-term 

trends, day of week and meteorology, plotted against the air pollution variable (PM2.5). Red solid 

and dashed lines: implied change of relative risk with respect to PM2.5 level 35 µg/m
3
 (the current 

daily PM2.5 standard), with pointwise 95% confidence bands. 

 

 
Figure 7: (Left) Plot of daily deaths in San Francisco Bay air basin. (Right) Plot of DFBETAs for 

the leading air pollution coefficient. The two circled points are the ones with the most extreme 

value of DFBETAs, implying most influence on the air pollution coefficient. 

 

The overdispersion parameter for these analyses was around 1.05. 
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Combining Results Across Air Basins 

 

In the NMMAPS papers on ozone (Bell et al 2004, Smith et al 2009), the single-city analyses were 

repeated for up to 98 US cities for which ozone and mortality data were available. They were then 

combined across cities using a hierarchical model analysis, based on an algorithm originally due to 

Everson and Morris (2000) and code by Roger Peng into the R function “tlnise”. The same method 

is used here to produce estimates that are combined across all eight air basins in our study. 

 

It would not be practicable (or interpretable) to repeat all the analyses for every combination of 

meteorological variables, lags of the pollutant variable, or degrees of freedom for the spline 

components of the model. Therefore, some choices were made, guided by the analyses already 

conducted for the South Coast and San Francisco Bay air basins, as follows: 

 

1. All analyses used all six meteorological variables. 

2. The degree of freedom parameters were set to be respectively 7, 6 and 6, for df0, df1 and df2. 

3. For both ozone and PM2.5, only certain certain combinations of lags were tried. 

  

The results of this analysis are shown in Table 7. None of the analyses show a statistically 

significant effect when combined across all eight air basins. 

 

Variable Lags Estimate SE t-value p-value 

            

Ozone 0,1 0.3376 0.2434 1.39 0.17 

Ozone 0,1,2 0.3165 0.2466 1.28 0.20 

Ozone 0,1,2,3 0.4149 0.3260 1.28 0.20 

PM2.5 0,1 0.0126 0.2034 0.06 0.95 

PM2.5 0,1,2,3 -0.0006 0.2464 0.00 1.00 

PM2.5 0,1,2,3,4,5 0.0689 0.2799 0.25 0.81 

 

Table 7: Combined results across all eight air basins. 

 

All the analyses in this paper so far are based on total non-accidental mortality for ages 65 and up. 

The analysis was repeated using (a) total non-accidental mortality for all ages, (b) respiratory deaths 

aged 65 and up, (c) circulatory deaths aged 65 and up, (b) combined respiratory and circulatory 

deaths aged 65 and up. None of these produced a statistically significant result in the combined 

analyses. 

 

The results of Table 7 were also repeated with the choices df0=7, df1=6, df2=6 replaced by (a) 

df0=10, df1=6, df2=6, (b) df0=7, df1=3, df2=3, (c) df0=10, df1=3, df2=3. The analysis of Table 7 was 

also repeated with relative humidity omitted from the analysis. None of these changes produced a 

statistically significant result in any of the combined analyses. 

 

Comparisons with NMMAPS 

 

We have pointed out that the statistical methods of this paper are similar to those of the NMMAPS 

study (see in particular Bell et al. 2004, Smith et al. 2009), but they are not identical. Those papers 

also included an interaction effect between age and long-term trend, and the meteorological 
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variables were daily mean temperature and dewpoint, rather than those of the present paper. What 

happens if we use exactly the same methods for the two datasets? 

 

To investigate this question, we recompiled the NMMAPS dataset but using tmax, tmin and daily 

max relative humidity as the meteorological variables. (Those variables are all in the NMMAPS 

dataset, but were not used in the previously cited papers.) The dataset was analyzed using the same 

computer code as the other analyses in this paper, applied to deaths aged 65 and over analyzed as a 

single age group (no interactions). We took df0=7, df1=df2=6 as in most of the analyses in this 

paper, and the distributed lag structure based on lags 0 through 6.  

 

 

 

City Estimate SE t-value p-value 

     Bakersfield 0.7031 0.9970 0.71 0.48 

Fresno 0.1577 0.9520 0.17 0.87 

Los Angeles 0.1941 0.2199 0.88 0.38 

Modesto 0.3027 1.5057 0.20 0.84 

Oakland 0.8943 1.0210 0.88 0.38 

Riverside 0.0255 0.6019 0.04 0.97 

Sacramento -0.0913 0.8334 -0.11 0.91 

San Bernardino 0.7358 0.6330 1.16 0.25 

San Diego 0.1080 0.4717 0.23 0.82 

San Jose -0.0481 0.9756 -0.05 0.96 

Santa Ana Anaheim 0.1231 0.4815 0.26 0.80 

Stockton 0.9981 1.3775 0.72 0.47 

All CA 0.2485 0.2307 1.08 0.28 

National 0.2873 0.0915 3.14 0.0017 

 

Table 8: Estimates for the ozone effect in 12 California cities from the NMMAPS study (San 

Francisco omitted because of lack of ozone data). Also shown are the combined results from all 12 

cities under “All CA”, and the combined results of all 98 US cities included in the NMMAPS ozone 

study. Applied to all deaths aged 65 and up, using tmax, tmin and maximum relative humidity as 

the three meteorological variables, and a distributed lag model for ozone covering lags 0-6.  

 

Since the first part of this note is concerned with California data, we concentrated on the California 

cities in the NMMAPS database. Table 8 shows results for each city, and the combined result for all 

12 California cities. Also shown in Table 8 is the national result, in which the 12 California cities 

were combined with 86 other US cities, reanalyzed using the software of the present paper. 

 

The last result shows a combined estimate of 0.287 (percent rise in mortality per 10 ppb rise in 8-

hour daily max ozone) and a standard error (more precisely, posterior standard deviation) of 0.0915. 

By comparison, the result quoted in Smith et al. (2009) was a combined estimate of 0.411 and a 

posterior standard deviation of 0.080. Just to make a further comparison with the results of Smith et 

al (2009), the method of the present paper was repeated with mortality data from all age groups 55 

and up (the same as in the original NMMAPS analyses) – in this case our estimated combined 

national coefficient, using the meteorological model of the present paper, rises only very slightly, 

from 0.287 to 0.300. Therefore, the difference in combined estimates compared with Smith et al 

(2009) appears to be due to the different meteorological variables used and not to the different 

treatments of age groups. It seems plausible that the treatment of meteorology in the present paper 



15 
 

(in particular, the separate use of tmax and tmin) is superior to the treatment in the earlier 

NMMAPS papers, resulting in a lower estimate of the ozone effect because of less confounding by 

weather.  

 

Nonlinear Distributed Lag Models 
 

In this section, we consider an extension of the preceding analyses that allows for the leading air 

pollution term to be nonlinear. 

 

Specifically, where we have previously defined the DLM(l1,…,lk) to have components 

 

β1(X(t- l1) + X(t- l2) + … + X(t- lk))/k + β2{ X(t- l2) - (X(t- l1) + X(t- l2) + … + X(t- lk))/k} + … + 

βk{ X(t- lk) - (X(t- l1) + X(t- l2) + … + X(t- lk))/k},                                                     (2) 

 

we now replace the term β1(X(t- l1) + X(t- l2) + … + X(t- lk))/k by a nonlinear term of form 

 

s((X(t- l1) + X(t- l2) + … + X(t- lk))/k; df3),                                                                 (3) 

 

in other words, a nonlinear spline in the average air pollution variable over all k lags, with df3 

degrees of freedom. As in previous discussions of nonlinear spline terms, there is no hard and fast 

rule for choosing df3, but in subsequent discussion we have generally set it equal to 6 since this is 

large enough in most cases to show a clear nonlinearity but not so large that the model is distorted 

by evident overfitting.  

 

The proposed model (3) is not as general as that of Gasparrini et al. (2010), who have proposed a 

tensor product representation that, in effect, allows all the components in (2) to be nonlinear at the 

same time. Such a model may be appropriate for examining the temperature-mortality dependence 

(the main focus of the cited paper) where, as we have seen, there is much stronger evidence for the 

direct influence of the covariate, but for the present study, where the covariate of interest is either 

ozone or PM2.5, such a model would surely be overfitting, given the paucity of evidence for even a 

linear effect. On the other hand, by retaining the linear terms β2,…,βk in (2), the model is more 

general than that of Bell et al. (2006), who used a spline term in the average ozone at lags 0 and 1, 

but without any “distributed lag” component. 

 

As a first example of this method, we develop the nonlinear analog of Figures 4 and 6. The model 

formed by combining (1) and (3), based on lags 0,1,2, and 3, was fitted to all eight California air 

basins for both ozone and PM2.5. Selected results are in Figures 8 and 9; results for other air basins 

are similar. In neither case is there any evidence of a systematic increase in risk with ozone or 

PM2.5. 
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Figure 8. Nonlinear dependence of mortality on ozone for South Beach air basin. Analogous to 

Figure 4, but using a nonlinear model for the ozone-mortality relationship. 

 

 
Figure 9. Nonlinear dependence of mortality on PM2.5 for San Francisco Bay air basin. Analogous 

to Figure 6, but using the full meteorological model (including relative humidity), and a nonlinear 

model for the ozone-mortality relationship. 

 

Next, we have computed a combined curve for all eight California air basins, using the “tlnise” 

algorithm to combine the estimated relative risks and their standard errors for each value of ozone 

or PM2.5. The results are in Figure 10 for ozone and Figure 11 for PM2.5. We have not attempted to 
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show the residuals from the individual meteorological analyses since it would be too cumbersome 

to try to display results from eight air basins on one plot. 

 
 

Figure 10: Combined ozone result for eight California air basins. 

 
Figure 11: Combined PM2.5 result for eight California air basins. 

 

In each case, the estimated relative risk curve is slightly increasing with increasing values of the 

pollution variable (up to about 100 ppb ozone, or about 40 µg/m
3
 PM2.5), but the wide confidence 

intervals cast clear doubt on the statistical significance of that relationship. Overall, the results 

reinforce our earlier claims that there is no systematic evidence of a mortality association with 

either ozone or PM2.5 in California. 

 

Let us now relate these to national results based again on the NMMAPS dataset. Apart from a brief 

discussion in Smith et al. (2009), the main national nonlinear result for ozone is that of Bell et al. 
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(2006), but this suffers from several limitations: it uses 24-hour ozone averages rather than 8-hour 

daily maxima; they only calculate the “national” curve without any regional results; and it is based 

on the average ozone level at lags 0 and 1 without any “distributed lag” component. The present 

analysis uses the nonlinear distributed lag model (3), based on the full range of lags from 0 through 

6 days, and is based on 8-hour daily maxima to be consistent with the measure used for the ozone 

standard. The meteorological variables are daily maximum temperature, daily minimum 

temperature and daily average relative humidity, as throughout this paper. As well as the “national” 

average, results are computed for each of the seven NMMAPS regions as used in previous 

NMMAPS papers such as Dominici et al. (2003) and Smith et al. (2009). 

 

Results are shown in Figure 12. For five of the regions (North West, Upper Midwest, South East, 

Southern California, South West) there is no consistent relationship between ozone and mortality 

when the width of the confidence bands is taken into account. For the North East and Industrial 

Midwest, there is a steady increase of relative risk with increasing level of ozone though the upper 

confidence band is at or slightly above zero throughout the 20-75 ppb range. Only when all the 

results are combined into a single “national” curve do we see an increasing ozone-mortality 

relationship that is clearly statistically significant as judged by the confidence bands. 

 

 

 
Figure 12: Combined ozone result for the NMMAPS dataset in each of seven regions of the US and 

nationally.  

 

We now examine the role of a possible PM10 confounding effect. 

 

As noted by Bell et al. (2007), only about 25% of all days in the NMMAPS dataset have both ozone 

and PM10 data (and for PM2.5, the proportion is far smaller, since regular PM2.5 monitoring only 

started in 1999). The present analysis is based on the nonlinear distributed-lag ozone-mortality 

response function using lags 0 and 1 for ozone. A day is defined as “available” for the ozone-

mortality analysis only if both lags 0 and 1 of ozone are available for that day. Among all available 

days, about 30% also have PM10 available for the same day (aggregated over all days in all cities). 

However, that 30% rises to about 57% if we allow for PM10 at any of lags 0, 1 and 2 (only one of 
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the three days being required to make the day available for analysis). We have followed that 

strategy here, and have defined the PM10 variable used for analysis as the average of available 

values across all three lags. This strategy has the advantage of increasing the number of days for 

which both ozone and PM10 are available, but the use of a more flexible definition of PM10 could 

also have the disadvantage of not fully capturing the confounding effect of PM10 if indeed there is 

one. Another aspect of the current analysis is that we only allow PM10 to enter linearly in the 

regression equation, whereas we are still assuming a nonlinear distributed lag model for ozone. For 

this reason as well, the analysis may not be fully capturing the confounding effect of PM10. 

 

Figure 13 shows the result of this analysis, when the resulting ozone-mortality curves are combined 

nationally using the same hierarchical analyses as for Figure 12.The result does not show any 

notable contrast between the two curves: in fact the blue curve (that does include the PM10 effect) 

shows a slightly stronger increase in risk across the range of ozone below 75 ppb than the red curve 

(without PM10). While the result is far from definitive, this strengthens the argument that PM10 is 

most likely not a confounder in the ozone-mortality relationship. 

 
Figure 13: Red curves: Nonlinear relative risk curve (with pointwise 95% confidence bands) for 

national ozone effect based on (0,1) lags. Blue curves: corresponding curves calculated taking PM10 

into account for all days where PM10 is available for at least one of lags 0, 1 or 2. 

 

Another kind of analysis, however, is an effect modifier analysis, in which we examine the 

possibility that the ozone-mortality relationship might itself vary according to the underlying level 

of PM10. The motivation for this is provided by a result in Smith et al. (2009), that included the 

following result (Table 2). For the all-year analysis and the standard (tlnise) method of combining 

results across stations, the linear ozone-mortality coefficient, restricted to days in which PM10 is 

below the median for each city, is 0.070 (posterior standard deviation 0.206). The same coefficient, 

restricted to days in which PM10 is above the median for each city, is 0.271 (posterior standard 

deviation 0.139). In other words, the ozone coefficient is statistically significant for high PM10 but 

not for low PM10. One possible interpretation of that result is that it might be more efficient to 

control for PM10 than ozone. 

 

A similar analysis was conducted, again using the NMMAPS data, but by the analysis methods of 
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the present note, in particular, the nonlinear distributed lag model in ozone (for lags 0 and 1). The 

results are dependent on various modeling choices including the assumed threshold value of PM10. 

One typical result is shown in Figure 14, where the PM10 threshold was taken as 25 µg/m
3
., close to 

the median over the entire database. Note that both risk curves are (as in earlier plots) standardized 

to the risk level at 75 ppb: our objective is to study possible changes in the shape of the relative risk 

curves, not their level relative to one another. 

 
 

Figure 14: Red curves: Nonlinear relative risk curve (with pointwise 95% confidence bands) for the 

national ozone effect based on (0,1) lags, restricted to days with PM10 above 25 µg/m
3
. Blue curves: 

same but for PM10 below 25 µg/m
3
. 

 

The result is again somewhat ambiguous. A strong “effect modifier” result would arise if there was 

a clear separation between the red and blue curves, which there is not. On the other hand, the width 

of the confidence bands for the blue curve (below the PM10 threshold) is substantially wider than for 

the red curve (above the PM10 threshold), implying a lack of statistical significance in this case. 

Overall, the result reinforces the difficulty of deriving any substantive results that go beyond the 

single-pollutant nationally averaged concentration-response curve. 

 

Discussion 

 

The first objective of this commentary was to examine the influence of ozone and PM2.5 on 

mortality in eight California air basins, 2000-2012. The method of analysis is one that has become 

standard in studies of this nature. Daily death counts are fitted using a generalized linear model with 

log link and a “quasipoisson” distributional form. That model assumes the same mean-variance 

structure as the Poisson distribution but with one additional parameter representing overdispersion. 

In the analyses of this paper, the overdispersion parameter is typically of the order of 1.05 to 1.07, 

indicating only a slight departure from the Poisson distribution. However, the standard errors are 

slightly larger when the overdispersion parameter is included and this is therefore recommended as 

a conservative approach. 

 

The covariates included in the analysis are long-term trend, day of week and three meteorological 
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variables: daily maximum temperature, daily minimum temperature and relative humidity. The 

well-known NMMAPS dataset used daily mean temperature and dewpoint as the two 

meteorological variables, but in other respects the analysis is the same. In particular, for each 

meteorological variable we have included the current day’s value and the average of the three 

previous days’ values, each modeled nonlinearly through a smoothing spline. The degrees of 

freedom of these smoothing splines, as well as the one involving long-term trend, have been varied 

to allow us to study the sensitivity to that parameter. 

 

The trickiest aspect of the analysis is in deciding which lag or lags of the air pollution variable to 

include. Unlike the choice of degrees of freedom in the smoothing spline, the choice of lags for the 

air pollution analysis does appear to have a substantial effect on the estimated coefficients. In these 

analyses, we have tried a total of ten different combinations of lags for the single-air basin analyses, 

and then used the results of that to guide the choice of lags for the combined analyses. Trying a 

wide variety of different lag structures and only using the one that gives the largest coefficient or 

the most statistically significant result has a flavor of “data snooping” and could lead to biased 

results. We have tried to mitigate that effect by only considering results for which the p-value is 

well under the standard 0.05, but there are not many such cases where even this mild criterion is 

satisfied. 

 

For ozone, we were unable to find any significant result for the South Coast air basin, and only for 

San Francisco Bay when the humidity variable was excluded, and with a relatively mild p-value 

(0.018). When the results are combined across all air basins, there is no effect of ozone on 

mortality. 

 

For PM2.5, there were several statistically significant results in South Coast but with negative 

coefficients, which does not make sense biologically. In San Francisco Bay, there were some 

statistically significant results with a positive coefficient, but only for models in which relative 

humidity was excluded. Given the inconsistent results and the relatively mild p-values associated 

with them, it seems likely that these results are a case of spurious statistical significance. When 

combined across all air basins, there is no statistically significant effect. 

 

To establish a direct comparison with the analyses of the NMMAPS dataset in Smith et al (2009), 

the results of that paper have been re-derived using the exact same statistical method used in the 

present paper (in particular, the same meteorological variables). Consistent with the results of the 

present paper, none of the individual-city results for California using the NMMAPS dataset showed 

a statistically significant effect, nor did the combined result of all California cities. However, the 

present method of analysis still shows a statistically significant “national” effect when applied to the 

whole NMMAPS dataset, although smaller than that reported in Smith et al. (2009). The fact that 

the national estimate is smaller using tmax, tmin and relative humidity as the meteorological 

variables could imply that these variables do a better job than the original NMMAPS variables 

(daily mean temperature and dewpoint) of capturing the confounding effect of ozone with 

meteorology. Moreover, Smith et al (2009) noted spatial variation of the ozone-mortality coefficient 

across cities, possible explanatory variables being the percentage of residences with central air 

conditioning (high in California) and the use of public transportation (high use of public 

transportation could correspond to high exposure to ambient pollutants, but use of public 

transportation is generally low in California). Because of this spatial variation, Smith et al 

questioned whether it made sense to compute a “national” estimate in the face of clear evidence that 

the effect is not, in fact, national in scope. The results of the present paper in no way contradict that 

discussion, and indeed strengthen it by confirming that California data for 2000-2012, most of 

which lies after the end of the NMMAPS data period, still does not show any statistically significant 

relationship between mortality and either ozone or PM2.5. 
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These analyses have been extended to allow a nonlinear concentration-response curve through the 

nonlinear distributed lag model. When restricted to the California dataset from 2000-2012, the 

results are similar to the linear analyses, and show little evidence of mortality dependence on either 

ozone or PM2.5. When the same methods are applied the NMMAPS dataset, we obtain new results 

that considerably extend those in previous papers such as Bell et al. (2006), Smith et al. (2009). 

Results averaged by region do not show a consistent pattern: only for the nationally averaged result 

is there a clear increasing mortality risk with ozone. We have also examined the possible role of 

confounding or effect modification by PM10. While the analyses do not provide support that either 

confounding or effect modification has an important role on the results, they also highlight the 

limitations of the data for providing further insight beyond the simple single-pollutant analyses. 
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