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1. INTRODUCTION

This very impressive paper brings together an enormous number of ideas from seem-
ingly disconnected fields. There are frequentist ideas associated with estimating
equations for general stochastic processes, and approaches to optimality associated
with the names of Godambe and Heyde; connections with the method of maximum
likelihood and the method of moments, also pseudo-likelihood, general Bayes estima-
tors and a new concept called the pseudo-posterior; connections with admissibility
theory; connections with ideas of ordering Markov chains in terms of their rates of
convergence in different metrics; and there is even a passing reference to the Stein
(or Stein-Chen) method of probability approximation, which is usually regarded as
a means of obtaining explicit upper bounds in rate-of-convergence problems.

With so many ideas interacting, it is difficult to identify any one specific theme
to concentrate on for a discussion. In my discussion, I would like to give my own
perspective on what is going on. I hope that by so doing, I can persuade other
to read the paper and form their own perspective of what are the most important
themes.

2. CONNECTION WITH BADDELEY (2000).

It is important to understand Baddeley’s paper to set the present work in context.
Baddeley’s formulation was a classical one: we assume a random variable X from a
density f(x | θ) where x or X lies in some sample space X , and θ lies in a parameter
space Θ. However we are thinking in terms of general stochastic models for which
an explicit representation of f may be hard to compute.

Baddeley assumes that for each θ it is possible to construct a Markov chain
{Xn, n = 0, 1, 2, ...} for which f(· | θ) is the stationary distribution. Assume it has
a generator AθS(x) = E {S(Xn+1)− S(Xn) | Xn = x}. Then for X ∼ f(· | θ),

Eθ{AθS(X)} = 0

for any sensible function S(X).
It follows that setting

AθS(X) = 0
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defines an unbiased estimating equation for θ in considerable generality. This ap-
proach is likely to be particularly appealing in cases where the exact formula for
f(· | θ) is intractable but it is relatively easy to define a Markov chain for which
f is the stationary distribution — precisely the situation from which most MCMC
methods begin. Thus although the viewpoint in Baddeley’s paper is purely frequen-
tist, it already contains a number of elements that are familiar to Bayesians who
use MCMC.

First Example. Suppose X = {Xi, i ∈ I} is a Markov random field with density
of the form f(x | θ) ∝ exp{θV (x)} where the normalizing constant is intractable.

Besag (1975) proposed to estimate θ by maximizing

∏
i∈I

f(xi | x−i, θ) (1)

where x−i denotes the set of all elements in x excluding xi. Equation (1) is called
the pseudolikelihood and the resulting estimator is the MPLE.

Baddeley showed that this is the time-invariance estimating equation for this
model when the embedding Markov chain is Gibbs sampling.

Thus in this case a well-known estimator (the MPLE) has been derived as a time-
invariance estimating equation. This suggests that the time-invariance estimating
principle may be used to derive alternative estimators for a Markov random field
or for more complicated stochastic models where suitable estimators either do not
exist at all, or have been previously derived only through ad hoc arguments.

Second Example. Consider a stationary point process on a compact subset of
IRd that has a density f(x | θ) defined for all possible realizations x with respect
to a unit Poisson process. For this process, Besag et al. (1982), Jensen and Møller
(1991) defined the pseudolikelihood function by extending the definition for Markov
random fields.

However for this process there is another estimator called the Takacs-Fiksel
estimator which depends on an arbitrary function h defined on the sample space X .
So this raises the question of what relationship exists between the two estimators.

Baddeley answered the question as follows: It is possible to define a spatial
birth-death process of which X is the stationary distribution. If f is an exponential
family and S(x) = V (x) (the canonical statistic) then the time-invariance estimator
is MPLE. On the other hand if S = h (apparently we don’t need an exponential
family assumption in this case) then the time-invariance estimator is the Takacs-
Fiksel estimator.

I believe this discussion highlights some of the major motivations for the ap-
proach. In some problems there are estimators (such as Takacs-Fiksel) that don’t
appear to be motivated by any likelihood-based approach. Time-invariance estimat-
ing equations provide a unifying perspective that allows such estimators to be related
to maximum likelihood and pseudo-likelihood. There are also instances where the
time-invariance approach leads to new estimators that have not been studied pre-
viously. Baddeley provides several other examples and makes a start on discussing
properties such as consistency and asymptotic optimality.

3. NEW APPROACHES TO ESTIMATION

Given that background, what’s new in the present paper?
I believe one can highlight two essentially new ideas:
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• Type II estimating equations: Choose an antisymmetric function T (x, y) =
−T (y, x) and define (FθT )(x) = Eθ{T (Xn, Xn+1) | Xn = x}.
Then for a reversible Markov chain, Eθ{(FθT )(X)} = 0. Hence setting
(FθT )(X) = 0 defines an unbiased estimating equation for θ.

If T (x, y) = S(x)− S(y), this reduces to the Type I estimating equation.

This extension is especially useful in cases where the embedding Markov
chain is Hastings-Metropolis, because the acceptance probability for Hastings-
Metropolis is a complicated function of both the existing and proposed new
states, that cannot be reduced to a simple difference of two functions. How-
ever, there are a number of instances when an appropriate estimating equation
can be expressed as a Type II EE.

• The second extension is to a Bayesian EE approach, in which we embed the
joint distribution of X and θ in a Markov chain on (X , Θ) — many examples
of this lead to standard Bayes estimators.

As several examples in the paper show, these ideas significantly extend Badde-
ley’s original approach. In particular, the Bayesian extension allows many Bayes
estimators to be expressed as time-invariance estimators.

4. CONNECTION WITH ADMISSIBILITY THEORY

Brown (1971) showed that it is possible to characterize admissibility or inadmissibil-
ity of estimators of a multivariate normal mean in terms of recurrence or transience
of an associated diffusion process.

Johnstone (1984, 1986) developed a similar characterization for the estimation
of Poisson means, where in his case the associated Markov chain was a birth and
death process.

Although these are celebrated papers, they are also highly technical and difficult
to understand in even an intuitive way. On the other hand, the approach of Eaton
(1982, 1992, 1997) is a less powerful but far more straightforward theory for deter-
mining when the generalized Bayes estimator derived from an improper prior ν on
Θ is almost-ν-admissible, a slightly weaker concept than traditional admissibility.
A simplified version of Eaton’s recipe is as follows:

(i) For θ, η ∈ Θ, define

r(θ | η) =

∫

X
q(θ | x)p(x | η)dx

where p(x | η) is the likelihood and q(θ | x) is the posterior density given
X = x when the prior is ν.

(ii) Think of r(θ | η) as the transition density of a Markov chain on Θ.

(iii) Under suitable regularity conditions, the recurrence of this Markov chain im-
plies almost-ν-admissibility of the generalized Bayes estimator.

(Eaton also comments on the converse property, i.e. when is it true that tran-
sience of the Markov chain leads to inadmissibility of the estimator? Apparently
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there are no general theorems in this direction, but it nevertheless seems to be
assumed that the result is generally true.)

Hobert and Robert (1999) defined an alternative Markov chain through the
transition kernel

r̃(y | x) =

∫

Θ

p(y | θ)q(θ | x)dθ.

Note that this defines a Markov chain on X . If we couple the X and Θ updatings
together, we also get a joint Markov chain defined on X ×Θ.

Hobert and Robert showed that all three Markov chains (including Eaton’s)
are positive recurrent, null recurrent or transient together. In particular, in some
cases it is possible to prove recurrence of the Markov chain on X -space when the
corresponding result on Θ-space would not follow from any known stochastic process
results — a major motivation and justification for their approach.

The present paper shows how these Markov chains can be used to re-derive a
number of known (Bayesian and frequentist) estimators. But it’s unclear to what
extent it leads to really new estimators. The maximum pseudo-posterior estimator
(Section 8.2) is one example that clearly exploits this idea of updating both the X
and Θ spaces in succession, but my impression is that further study will be needed
to decide whether this really is a good idea.

5. ASYMPTOTIC PROPERTIES OF ESTIMATORS

The approach of this paper offers potentially a large number of estimators for a given
stochastic model. Whether the estimator is derived from the original estimating
equation approach of Baddeley (2000), or from one of the more Bayes-oriented
schemes of the present paper, it is still natural to use frequentist properties such as
asymptotic variance as a means of discriminating among different point estimators.
Sections 4 and 9 of the paper refer to attempts to relate asymptotic properties of
the estimators to order properties of the generating Markov chains; I would like to
make some comments about that and to propose a small extension to one of the
results of Mira and Baddeley (2001).

If we consider the estimator θ̃ defined by solving (AθS)(X) = 0, then the
Godambe-Heyde formula leads to the approximation

Var(θ̃) ≈ E
{∇θ(AθS)(X)

}−T
Cov{(AθS)(X)}E {∇θ(AθS)(X)

}−1
.

This has numerous alternative names, including the “information sandwich for-
mula”.

If Θ is one-dimensional, the formula reduces to

Var(θ̃) ≈ Var{(AθS)(X)}[
E

{
∂(AθS)(X)

∂θ

}]2 (2)

Suppose now that {Yn} and {Zn} are two reversible Markov chains with the same
stationary distribution πθ. With obvious notation, we also let AY,θ and AZ,θ denote

the generators indexed by θ, and θ̃Y , θ̃Z the resulting time-invariance estimators. If
Yn dominates Zn in covariance ordering (Mira 2001), one of the consequences is

Eθ{S(X)(AY,θS)(X)} ≤ Eθ{S(X)(AZ,θS)(X)} ≤ 0 (3)
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for any S ∈ L2
0(π), the class of square integrable functions having zero mean with

respect to π (Mira and Baddeley, 2001).
Consider the case S(x) = ∂

∂θ
log f(x; θ). Then

Eθ{S(X)(AY,θS)(X)} = −Eθ

{
∂

∂θ
(AY,θS)(X)

}
(4)

To see (4), we merely need to note that for a statistic T (x, θ) which is uniformly
differentiable in θ,

∂

∂θ
Eθ {T (X, θ)} = Eθ

{
T (X, θ)

∂ log f(X; θ)

∂θ

}
+ Eθ

{
∂T (X, θ)

∂θ

}
. (5)

However for T (x, θ) = Aθ(S)(x), the left hand side of (5) is 0, and we then deduce
(4).

By combining (2), (3) and (4), we deduce the following:

Proposition: If

(i) {Yn} dominates {Zn} in covariance ordering, for each θ, and

(ii) Var{(AY,θS)(X)} ≤ Var{(AZ,θS)(X)},
then (under uniform differentiability conditions) θ̃Y is more efficient than θ̃Z in the
Godambe-Heyde sense.

This result differs from that in Mira and Baddeley (2001) only in that they
assumed an exponential family, and that assumption seems to me unnecessary. This
distinction could be important for extending the results to other kinds of spatial
processes (such as those that arise in geostatistics) where an exponential family
assumption would be unduly restrictive.

Nevertheless, this is still a limited result, since as shown in several examples
by Mira and Baddeley (2001), assumption (ii) cannot be dispensed with. It seems
that quite a bit more work is needed to understand exactly how properties of the
embedded Markov chain translate to those of the time-invariance estimator.

6. CONCLUSIONS

This is a very stimulating paper that brings together numerous Bayesian and fre-
quentist concepts and provides a very general perspective on estimation of stochastic
processes. I congratulate the authors, and look forward to seeing further develop-
ments of their work.
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