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1 Introduction

Often times, it is assumed that modeling “geostatistical” processes within
the realm of multivariate normal models is appropriate. There is by now a
substantial literature on the selection and estimation of models for spatial
data (see e.g. Cressie [10], Stein [22], Chilès and Delfiner [9], Banerjee et al.
[3]). Many of the common geostatistical models may be expressed in the form

X ∼ N (µ,Σ(θ)) , (1)

with {Xi, i = 1, ..., N} the vector of observations with mean µ and N × N
covariance matrix Σ(θ) (assumed of a known format), expressed in terms of
a finite-dimensional parameter vector θ. A simple example is the exponential
covariance model, σij = θ1e

−dij/θ2 where σij represents the covariance between
observations Xi and Xj, dij is the physical distance between the two locations,
and θ1 and θ2 are model parameters.

In such models, it is widely recognized that either the method of maximum
likelihood or the closely related technique of restricted maximum likelihood
(Cressie [10], Stein [22]) are the best general methods of estimation. Maximum
likelihood is based on minimizing the negative log likelihood function which,
modulo some constants, is of the form:

`(µ, θ) =
1

2
log |Σ(θ)|+ 1

2
(Y − µ)T Σ(θ)−1(Y − µ). (2)

A disadvantage of likelihood-related techniques, however, is the computational
efficiency of the likelihood function. Evaluation of (2) requires calculating the
inverse and determinant of a N × N matrix, which according to most com-
monly used algorithms, requires O(N3) steps. Many modern data sets contain
thousands of observations, for which such computation is prohibitively time
consuming. Therefore, there is some interest in finding approximations to the
likelihood function that are more efficient to compute, while trying not to
sacrifice much statistical efficiency.

Several computationally efficient alternatives to maximum likelihood estima-
tion have been explored in the literature. One such strategy was proposed
by Vecchia [26] who computed approximate conditional densities along some
sequence of arbitrarily ordered sampling points and ignoring long-range cor-
relations. Recently Stein et. al [23] generalized Vecchia’s idea in a number of
ways. They developed a variant of the method to approximate the restricted
likelihood function in place of the likelihood function itself. They argued that,
rather than evaluate conditional densities one observation at a time, it might
be more efficient to do it in blocks.
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Another approach to efficiently estimate semivariograms is explored by Cur-
riero and Lele [11] who exploit the composite likelihood introduced by Lind-
say [18] for the estimation of spatial hierarchical model parameters. The same
principles are also applied to modeling binary data in a subsequent paper by
Heagerty and Lele [14]. The main idea proposed is to construct an approx-
imate log-likelihood function by adding marginal log-likelihoods even when
these components do not necessarily represent independent replicates.

For massive data sets, several efforts have been put into developing efficient
interpolation techniques that do not rely on using arbitrarily chosen local
kriging neighborhoods (see Cressie [10]). Recent advancements in the field
propose approximations to the kriging equations by tapering the covariance
matrix, as in Furrer et. al [12] which may have the disadvantage of ignoring
long range correlations. Other suggestions include iterative methods to solve
linear systems such as conjugated gradients as in Billings et. al [7] or using a
multiresolution (wavelet) basis function as advocated by Nychka et. al [20].

An alternative approach introduced by Huang et. al [15] is to construct classes
of covariance matrices that allow kriging to be performed exactly even for very
large data sets. This idea is based on a multi-resolution tree-structured model
that preserves mass balance across resolutions (i.e. it is resolution consistent)
and uses a change of resolution Kalman filter. Building on these ideas, Jo-
hannesson and Cressie [16] and Tzeng et. al [25] propose several extensions
of these models to improve the ”blocky” structure of the initially proposed
covariances and to extend it to spatio-temporal modeling. We have not taken
this approach in the present work.

For stationary processes on a lattice, there are several approaches to approxi-
mating the likelihood efficiently as proposed, for example, by Whittle [29] or
Guyon [13] or simplifying the exact likelihood computations as proposed by
Zimmerman [30]. For autoregressive models on a lattice, Smirnov et. al [21]
introduce an approach based on characteristic polynomials for calculating the
determinant of a very large matrix, while Barry et. al [4] employ a method
based on Monte Carlo estimation for sparse matrices.

In this paper we examine other three approximations to the log likelihood, all
aimed at improving computational efficiency. All three methods rely on some
initial grouping of observations into blocks, as follows:

(1) The “Big Blocks” method reduces each block to its block mean; thus if
there are B blocks, X̄b is the mean of observations in the bth block (1 ≤
b ≤ B), µb is the expected value of X̄b and ΣB is the covariance matrix
of X̄1, ..., X̄B, we evaluate the likelihood corresponding to (2) based on
just the block means.

(2) The “Small Blocks” method replaces (2) by
∑

b `b(µ, θ) where `b(µ, θ) is
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the likelihood based on just the observations within block b; equivalently,
this method treats the blocks as if they were independent of each other.

(3) The “Hybrid” method combines the two concepts, by first computing
the big-blocks likelihood, then the small-blocks likelihood conditional on
the respective block means; these two log likelihoods are then added to
produce the hybrid log likelihood. In effect, the Hybrid method assumes
that, conditional on the block means, the within-block deviations from
the block mean are independent from block to block.

Provided B is chosen appropriately, all three approximate likelihoods are com-
putable in at most O(N2) steps, a significant computational saving when N is
of the order of several hundred to a few thousand, which is the range within
which we envision such approximation being useful.

In a parallel paper, Caragea and Smith [8] adopt a more intuitive approach
based on the “information sandwich” formula for assessing asymptotic vari-
ances of these estimators defined by estimating equations. The theoretical
investigation is followed by numerical approximations and simulations to ex-
amine the properties of these methods in situations that are more plausible
for modeling spatial data. This work is developed in the classical context of
spatial regression with known (and constant) mean, and lays out the details
of extending the present method to REML estimation, estimation of regres-
sion parameters and kriging. Two separate properties of these estimators are
examined in detail: (a) comparing the asymptotic variance of the proposed
estimator with that of MLE, (b) assessing how well standard errors computed
from the observed information approach (treating the approximate likelihood
as if it were an exact likelihood) correspond to the true standard deviations of
the estimators. Theoretical developments and numerical results are presented
for stationary process on a lattice with an exponential or Matérn covariance
matrix. Comparisons of efficiencies suggest that the big blocks estimator is
poor except when the range of the spatial covariance function is compara-
ble with the range of the sampling locations. The efficiencies of the small
blocks and hybrid estimators appear comparable in most circumstances, ex-
cept when the Matérn model with small shape parameter, when the hybrid
method appears clearly superior. In terms of the second criterion considered in
this paper, the hybrid method is superior in the sense that estimated standard
errors from inverting the approximate observed information matrix are closer
to the true standard errors than those derived by the small blocks method. A
real-data example based on rainfall trends suggests that the hybrid estimator
is very often, but not invariably, closer to the true MLE than the small-blocks
estimator, while the three sets of standard errors (using the direct method)
are comparable. The quality of predictions produced by the three methods,
assessed by a cross-validated mean squared prediction error, was almost iden-
tical for this example. In conclusion, the hybrid method is recommended as a
good all-round alternative to the exact maximum likelihood estimation.
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The present paper concentrates on more theoretical aspects, in particular de-
riving rigorous asymptotic efficiencies of the proposed estimators when the
number of blocks, B tends to ∞ keeping the block sizes fixed.

The paper is organized as follows. Section 2 describes the theoretical tools we
employ to derive the asymptotic variance of the alternative estimators, essen-
tially based on the martingale central limit theorem applied to a white noise
expansion of the model. Section 3 then describes a simple example based on
the one-dimensional first-order autoregressive process (AR(1)). Although, for
this example, the exact likelihood is easy to calculate and the asymptotic effi-
ciency of MLE has also been established under suitable regularity conditions
(Akahira and Takeuchi [1]), the main purpose of our calculation is to provide a
relatively simple illustration of how the general method works, in a situation
where it leads to concrete analytic calculations of the asymptotic efficiency
of our three approximate estimators. Section 4 extends the calculations for
the asymptotic variances of the alternative estimators for a particular class
of stationary processes on a lattice (essentially, Kronecker products of AR(1)
processes). We conclude by drawing general remarks based on the results ob-
tained for the two special cases considered here and suggest several extensions
to the problem.

It should be noted here that although the proposed ideas of approximating the
likelihood function were motivated by practical geostatistical applications, the
present paper restricts its attention to one- and two-dimensional autoregressive
processes. We are confining our theoretical calculations to such regular and
simpler processes because their dependence structure provides an environment
where mathematical calculations, although still not easy to obtain, are feasible
and not because there is any evidence they provide a good model for spatial
data.

2 The “Expansion Method”

This section outlines the so-called expansion method, which is the main tool
we use to prove our asymptotic results. It has three components, (a) the infor-
mation sandwich formula for the asymptotic covariance matrix of a consistent
estimator defined by general estimating equations (Section 2.1), (b) conditions
for consistency (Section 2.2) and (c) an adaptation of the martingale central
limit theorem for proving asymptotic normality of quadratic forms of normal
random variables (Section 2.3).
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2.1 Information Sandwich approach

Suppose we have a statistical model indexed by a finite-dimensional parameter
θ, whose true value is denoted θ0, and a consistent estimator θ̃N constructed by
minimizing a criterion function SN(θ). We assume SN(θ) is at least twice con-
tinuously differentiable in θ, and that its underlying distribution is sufficiently
smooth that the function H(θ), defined below, is continuous in a neighbor-
hood of θ0. We write ∇f(θ) for the vector of first-order partial derivatives of
any function f with respect to the components of θ, and ∇2f for the matrix
of second-order partial derivatives. Suppose

(SA1) 1
N
∇2SN(θ)

p→ H(θ) as N → ∞ uniformly on some neighborhood of θ0,
where H(·) is a matrix-valued function, continuous near θ0, with H(θ0)
invertible,

(SA2) 1√
N
∇SN(θ0)

d→ N (0, V (θ0)) for some covariance matrix V (θ0).

Then the asymptotic distribution of θ̃N is

√
N(θ̃N − θ0)

d→N (0, H(θ0)
−1 V (θ0) H(θ0)

−1 ) . (3)

References for this method include Liang and Zeger [17] and White [28]. In
addition, Stein et. al [23] developed a similar “information sandwich” approx-
imation for the spatial covariance matrix of the resulting estimator to the one
we propose here.

2.2 Consistency

We demonstrate consistency of our proposed estimators using Theorem 4.1.2
of Amemiya [2], which is as follows:

Theorem 1 Assume:

(A) Θ is an open subset of the Euclidean p-space (the true value θ0 is an
interior point of Θ),

(B) The criterion function SN(θ) is a measurable function for all θ ∈ Θ, and
∇Sn exists and is continuous in an open neighborhood of θ0,

(C) 1
N
SN(θ) converges in probability uniformly to a non-stochastic function

S(θ) in an open neighborhood of θ0, and S(θ) attains a strict local maxi-
mum at θ0.

Then there exists a sequence εN → 0 such that

P {∃ θ∗s.t. | θ∗ − θ0 |< εN ,∇SN(θ∗) = 0} → 1, as N →∞ .)
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Assumption (A) is one of the assumptions of our method, while (B) is satisfied
by all our criterion functions. Since each of the approximate log-likelihoods
considered in this paper is a sum of exact log-likelihoods for some subset of
the data, it follows that the first order derivatives of SN are bounded on a
neighborhood of θ0, and that 1

N
E|∇SN(θ)| ≤ K, on a neighborhood of θ0.

Using a first order Taylor’s expansion, it is clear that for some θ∗N and θ∗∗N
between θ0 and θ, we have that

1

N
SN(θ)− 1

N
SN(θ0) =

1

N
∇SN(θ∗N)(θ − θ0) and (4)

S(θ)− S(θ0) =∇S(θ∗∗N )(θ − θ0) . (5)

Therefore the difference between (4) and (5) is∥∥∥∥( 1

N
SN(θ)− S(θ)

)
−
(

1

N
SN(θ0)− S(θ0)

)∥∥∥∥ ≤ Γ ‖θ − θ0 ‖ (6)

where Γ has finite expectation. Note that the right-hand side of equation (6)
converges to 0 uniformly over a decreasing sequence of neighborhoods of the
form ‖ θ − θ0 ‖< εN , for any sequence of εN tending to 0. Also, N−1SN(θ0)−
S(θ0)

p→ 0 by the law of large numbers. Therefore, N−1SN(θ)−S(θ) converges
to 0 uniformly on a neighborhood of θ0 such that ‖ θ−θ0 ‖< εN , which proves
condition C of the Theorem 1.

Henceforth, we assume that the conditions in this subsection are satisfied for
all of our estimators.

2.3 Properties of Quadratic Forms of Normal Random Variables

For all our estimators, the approximate log likelihood is a quadratic form of
normal random variables, so the information sandwich approach requires that
we prove a weak law of large numbers and a central limit theorem for such
functions. We concentrate here on the CLT; the corresponding WLLN is an
easy corollary.

Consider the sequence
SN =

∑
{i,j: i≤j}

aN,i,jξiξj, (7)

where {ξi} are independent N [0, 1], and coefficients {aN,i,j} are defined for
each N . We are interested in limits as N → ∞. In principle the sum in (7)
extends across 1 ≤ i ≤ j <∞ though in practice the sum is often truncated,
with N denoting the length of the sequence. We can then calculate the mean,

mN = E[SN ] =
∑

i

aN,i,i (8)
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and the variance,

vN = Var[SN ] = 2
∑

i

a2
N,i,i +

∑
{i,j: i<j}

a2
N,i,j. (9)

This implies the natural conjecture that with mN and vN defined by (8) and
(9),

SN −mN√
vN

d→ N [0, 1]. (10)

Theorem 2 Suppose

(A1) max
i
a2

N,i,i/vN → 0 as N →∞

(A2) max
k

 ∑
i: i<k

a2
N,i,k

 /vN → 0 as N →∞

Then (10) holds.

This is a consequence of the discrete-time martingale central limit theorem
(Billingsley [5], Theorem 35.12).

We also note a “symmetric” version of the same result: if aN,i,j = aN,j,i for all
N, i, j and SN is defined by

SN =
∑

i

∑
j

aN,i,jξi ξj , (11)

then with mN again defined by (8), and vN by

vN = 2
∑

i

∑
j

a2
N,i,j, (12)

Theorem 2 holds with (A1) and (A2) combined into a single condition:

(A3) maxk
∑

i a
2
N,i,k/vN → 0.

In this formulation, the result is no longer dependent on any ordering of the
indices. This is particularly useful when the indices are no longer integers but
may be arbitrary points on a lattice, as is the case for our later results based
on random fields.
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3 Applications of the Expansion Method to a One-Dimensional
Autoregressive Process

In this section, we illustrate the expansion method to derive the asymptotic
properties of our three estimators in a relatively easy (but still novel) case:
the one-parameter first-order autoregressive process (AR(1)).

We define the process by Xi+1 = φ Xi + εi+1, where |φ| < 1 and εi ∼ N [0, σ2
ε ]

independently. Alternatively, we write the process in the form

Xi = σε

i∑
r=−∞

φi−rξr, (13)

with ξr independentN [0, 1]. If U = (ui,j)1≤i,j≤N denotes the covariance matrix,
U−1 = (u?

i,j)1≤i,j≤N its inverse and |U | its determinant, then

ui,j =
σ2

ε

1− φ2
φ|i−j|, (14)

|U |= σ2N
ε

1− φ2
, (15)

u?
i,j =

1

σ2
ε


1 , if i = j = 1 or i = j = N,

1 + φ2 , if 2 ≤ i = j ≤ N − 1,

−φ , if | i− j |= 1,

0 elsewhere.

(16)

For simplicity of subsequent calculations, we assume σ2
ε is known.

3.1 Classical Maximum Likelihood Estimator

The asymptotic behavior of the maximum likelihood estimator of an AR(1)
model is of course well known (see, for example, Brockwell and Davis [6]), but
is given here to illustrate the expansion method. The negative log likelihood
function is defined by (2) with µ = 0, Σ = U , so the maximum likelihood
estimator for φ solves

φ

1− φ2
− 1

σ2
ε

[
N−1∑
s=1

Xs (Xs+1 − φXs) + φX2
1

]
= 0 . (17)
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It follows at once that E [∂φ`(φ)] = 0. We also need to calculate Var [∂φ`(φ)],
which is equivalent to calculating

1

σ4
ε

Var

[
N∑

s=2

s−1∑
r=−∞

φs−r−1ξs ξr + 2
1∑

s=−∞

s−1∑
r=−∞

φ3−s−rξs ξr +
1∑

s=−∞
φ3−2sξ2

s

]
.

The expression we need to calculate the variance of is of the form given in (7),
with

aN,s,r =


σ2

εφ
3−2s , if r = s ≤ 1

2 σ2
εφ

3−s−r , if s ≤ 1 and r ≤ s− 1

σ2
εφ

s−r−1 , if 2 ≤ s ≤ N − 2 and r ≤ s− 1

0 , elsewhere.

(18)

It follows that

Var [∂φ`(φ)] = 2
∑
s

a2
N,s,s +

∑
s<r

a2
N,s,r

= 2
1∑

s=−∞
φ2(3−2s) +

N∑
s=2

s−1∑
r=−∞

φ2(s−r−1) +
1∑

s=−∞

s−1∑
r=−∞

4 φ2(3−s−r)

=
N − 1− (N − 3)φ2

(1− φ2)2
. (19)

Also, for any fixed r, the sum
∑

s<r a
2
N,s,r is bounded by a constant, therefore

the condition (A2) in Theorem 2 is satisfied, and so is (A1). As a consequence,
the asymptotic distribution of the gradient of the negative log likelihood func-
tion is normal, with mean 0 and variance given by expression (19).

A similar calculation, whose details we omit, shows directly that (19) is also
the mean of the second derivative of the negative log likelihood function, and
since this is ∼ N/(1− φ2), it follows that

√
N(φ̂− φ)

d→ N
[
0, 1− φ2

]
, (20)

in agreement with Brockwell and Davis [6], Example 8.8.1, page 259.

3.2 Big Blocks Estimator

Suppose we divide the time series of length N into B blocks of length K, so
that N = BK. In practice, we might have blocks of slightly unequal length
to allow for the possibility that N is not divisible by K, but for the purpose
of the present exposition, we consider only cases where N = BK exactly, and
derive asymptotic results as B →∞ for fixed K.
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If X∗
b denotes the mean of the bth block, in other words X∗

b =
K−1∑K

j=1X(b−1)K+j, and if γ∗m = Cov[X∗
b , X

∗
b+m] denotes the autocovariance

function of the block means process, then we readily calculate

γ∗m =



[
2φK+1−2φ−Kφ2+K

K2 (1−φ)2 (1−φ2)

]
σ2

ε , if m = 0 ,

[
φ(1−φK)2

K2 (1−φ)2 (1−φ2)

]
σ2

ε , if m = 1 ,

(φk)m−1γ∗1 , if m ≥ 2 .

This autocovariance function is of ARMA(1,1) form (see, e.g., Problem 3.16,
page 112, of Brockwell and Davis [6]) and we could in principle use the asymp-
totic distribution of MLE for an ARMA(1,1) process (Brockwell and Davis [6],
Example 8.8.3, pp. 259–260) as the basis for calculating the asymptotic vari-
ance of the Big Blocks estimator. However the details of this calculation are by
no means straightforward. We prefer to proceed directly, using the expansion
method, since these calculations are also needed for the development of the
Hybrid estimator.

For notational convenience, we have defined Vmeans to be the covariance matrix
of (X∗

1 , ..., X
∗
B), and v′ij to be the (i, j) entry of ∂φV

−1
means(φ). We calculate

V −1
means analytically, using the algorithm of Trench [24] for inverses of Toeplitz

matrices.

If we define pmeans(φ) to be the negative log likelihood of (X∗
1 , ..., X

∗
B) and

∂φpmeans(φ) its derivative with respect to φ, then, adapting the formula (2),
we find modulo some fixed constants,

∂φpmeans(φ) =
1

2

 1

K2

B∑
i=1

B∑
j=1

v′ij

K∑
`=1

K∑
m=1

X(i−1)K+`X(j−1)K+m +
∂φ|Vmeans|
|Vmeans|

 .

(21)
Using the expansion (13) in (21), we find

Var[∂φpmeans(φ)] =
σ4

ε

4K2

×Var

 B∑
i=1

B∑
j=1

K∑
`=1

K∑
m=1

(i−1)K+`∑
r=−∞

(j−1)K+m∑
s=−∞

v′ijφ
(i+j−2)K+`+m−r−sξr ξs

 . (22)

If we define

a
(1)
N,r,s =

σ2
ε

2K

B∑
i=1

B∑
j=1

K∑
`=η

K∑
m=ν

v′i j φ
(i+j−2)K+`+m−r−s , (23)
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where the summation lower bounds are defined as η = f1(i, r,K), ν = f1(j, s,K),
and f1 is given by:

f1(j, r,K) =


1 if r − (j − 1)K ≤ 1 ,

r − (j − 1)K if 1 < r − (j − 1)K ≤ K ,

K + 1 if r − (j − 1)K ≥ K + 1 ,

(24)

it follows that the expression within the brackets in equation (22) is rewritten

as
∑

{r,s: r<s} a
(1)
N,r,s ξr ξs .

The conditions of Theorem 2 are satisfied and we obtain that

E[∂φpmeans(φ)] =
∑
r

a
(1)
N,r,r = 0 and

Var[∂φpmeans(φ)] = 2
∑
r

a
(1)
N,r,r

2
+

∑
{r,s: r<s}

a
(1)
N,r,s

2
. (25)

We have not attempted to evaluate (25) analytically but instead give numerical
results.

Moreover, since the Big Blocks estimator is the maximum likelihood estimator
based on the block means, the expected value of ∂2

φ pmeans(φ) is the same as
(25) and therefore, in this case, the information sandwich approximation to
the asymptotic variance is just the reciprocal of (25).

As a measure of performance for the Big Blocks estimator φ̂1, we compute the
relative asymptotic efficiency as the ratio between its asymptotic variance and
that of the maximum likelihood estimator:

e1(φ̂, φ̂1) =
Var[φ̂]

Var[φ̂1]
. (26)

Expression (26) has been evaluated numerically, for various values of φ. In an
effort to maintain a baseline for comparison provided by the ML estimator,
we kept the sample size (N) fixed in all the numerical calculations. Results
obtained for an AR(1) time series of length 500 and various number of blocks
(5, 10 and 50) are presented in Table 1 (the columns labeled “Theory”.)

In addition to the numerical calculations of the theoretical results, we also
performed a simulation study. These results, based on 1000 replications, are
reported in Table 1 under the columns labeled “Sim.”. The results obtained
from theoretical calculations and simulations agree, taking into consideration
the simulation-induced error.

A scrutiny of the results in Table 1 leads to the conclusion that summariz-
ing block information only through its mean is not statistically efficient (note

12



B=5 K=100 B=10 K=50 B=50 K=10

φ Theory Sim. Theory Sim. Theory Sim.

–0.750 0.00214 0.002 0.00330 0.003 0.00549 0.005

–0.250 0.01166 0.013 0.02265 0.020 0.08982 0.080

–0.010 0.01925 0.018 0.03773 0.036 0.15929 0.158

0.010 0.02003 0.019 0.03929 0.039 0.16702 0.165

0.250 0.03280 0.032 0.06434 0.055 0.27280 0.269

0.750 0.13367 0.132 0.25465 0.255 0.73897 0.724

Table 1
Time Series: Big Blocks Asymptotic Relative Efficiency

the poor efficiency of the Big Blocks estimator with respect to the maximum
likelihood estimator). The only cases where its efficiency increases to a satis-
factory level is when block sizes are very small (which is to be expected), in
which case the method is not attractive from the computational perspective
(the number of blocks is very close to the original number of observations).

Based on the results obtained in this subsection, we could not recommend the
use of the Big Blocks estimator as an alternative to the MLE, in spite of its
computational efficiency, except in a few specific situations. It is, neverthe-
less, a very important step in the theoretical development of the asymptotic
properties of the proposed alternative estimators. The general methodology
used to calculate the relative efficiency is incorporated and extended to the de-
velopment of the intuitively more interesting cases, Small Blocks and Hybrid
pseudo-likelihood functions.

3.3 Small Blocks Estimator

In this subsection, we assume the same setting as for the Big Blocks estimator
(in particular, we assume a time series of length N is divided into B blocks of
length K, where N = BK) but instead consider the Small Blocks estimator.

If we denote by XK
j = (X(j−1)K+1, . . . , XjK) the vector of K observations in

the j-th block and by UK the K×K covariance matrix given by (14) (identical
for all blocks), we can write the negative log likelihood function for a given
block j as:

`j(φ) =
K

2
log 2π +

1

2

(
XK

j

T
UK

−1XK
j + log |UK |

)
. (27)

Since the pseudo-likelihood function is the product of the B block likelihoods,

13



it follows that the negative pseudo log likelihood function has the form:

pSmallBlocks(φ) =
K B

2
log 2π +

B

2

 B∑
j=1

XK
j

T
UK

−1XK
j + log |UK |

 , (28)

which, modulo fixed constants and using (14) and (16), is equivalent to:

pSmallBlocks(φ) ∼= B log
1

1− φ2
+

B∑
j=1

XK
j

T
U−1

K XK
j

=−B log (1− φ2) +
1

σ2
ε

B∑
j=1

[
(1 + φ2)

K−1∑
i=2

X2
(j−1)K+i

− 2φ
K−1∑
i=1

X(j−1)K+iX(j−1)K+i+1

]
. (29)

The Small Blocks estimator, denoted by φ̂2, minimizes the function in (29).

The first step is to check consistency of the estimator. For this, we could use the
general methods of Section 2.2, but in this case, since φ is a one-dimensional
parameter, it is simpler to use the following result (van der Vaart [27], Lemma
5.10):

Lemma: Let Φ be a subset of the real line and let ψN be random functions
and ψ a fixed function of φ such that ψN(φ)

p→ ψ(φ) for every φ. Assume that
each map ψN(φ) is nondecreasing with ψN(φ̂N) = op(1) or is continuous and

has exactly one zero, φ̂N . Let φ0 be a point such that ψ(φ0−ε) < 0 < ψ(φ0+ε)

for every ε > 0. Then φ̂N
p→ φ0.

For the case of the Small Blocks estimator, it is readily checked that the
expression ∂φpSmallBlocks(φ) is an increasing function of φ, and the remaining
conditions are standard applications of the WLLN and CLT. Therefore, we
conclude that the small blocks estimator φ̂2 exists (as a function of sample
size N) and is consistent as N →∞.

We use the expansion method to calculate the asymptotic variance of the Small
Blocks estimator. In particular, the first derivative of the negative pseudo log
likelihood function in (28), modulo fixed constants, equals

∂φpSmallBlocks(φ) =
B∑

j=1

K∑
`=1

K∑
m=1

X(j−1)K+` u
′
`m X(j−1)K+m +

∂φ|UK |
|UK |

. (30)

Here we denoted ∂φU
−1
K by U ′ with the (i, j)th entry given by u′ij. Using the

14



expansion (13), the summation in (30) becomes

σ2
ε

B∑
j=1

K∑
`=1

K∑
m=1

(j−1)K+`∑
r=−∞

(j−1)K+m∑
s=−∞

u′` m φ2(j−1)K+`+m−r−sξr ξs . (31)

Denoting by

aN,r,s = σ2
ε

B∑
j=1

K∑
`=λ

K∑
m=ν

u′` m φ2(j−1)K+`+m−r−s , (32)

where the lower summation bounds are λ = f1(j, r,K), ν = f1(j, s,K) with
f1 as in (24), we rewrite the expression in (31) as:∑

{r,s: r<s}
aN,r,s ξr ξs .

Since all the conditions set by Theorem 2 are satisfied, we obtain that

E[∂φpSmallBlocks(φ)] =
∑
r

aN,r,r = 0 and

Var[∂φpSmallBlocks(φ)] = 2
∑
r

aN,r,r
2 +

∑
{r,s: r<s}

aN,r,s
2 . (33)

The simpler form of the Small Blocks pseudo-likelihood, which is apparent
from equation (29), is due to the block independence assumption and the
simple structure of the inverse block covariance matrix as given by (16). After
lengthy manipulations, it can be shown that the expression (33) reduces to:

Var[∂φpSmallBlocks(φ)] =
1

B2(1− φ2 K)2
(

2φ2

1−φ2 +K − 1
)2

×
{
−4φ2(φ2 B K − 1)

[
−φ2 + φ2 K(1− φ2)2(K − 1)

]
+ B(φ2K − 1)

[
1− 3φ2 − 4φ4 −K +K φ2

+ φ2K
(
−1 +K +φ2 (3K − 1 + 4φ2(−2 + φ2)(K − 1)

)]}
(34)

To complete the derivations of the asymptotic variance of the Small Blocks
estimator we need the expected value of ∂2

φpSmallBlocks(φ), which is a routine
calculation leading to the following expression:

E[∂2
φpSmallBlocks(φ)] =

2B

1− φ2

(
2φ2

1− φ2
+K − 1

)
. (35)
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B=5 K=100 B=10 K=50 B=50 K=10

φ Theory Sim. Theory Sim. Theory Sim.

-0.750 0.98998 0.999 0.97878 0.990 0.92595 0.934

-0.250 0.99292 0.991 0.98407 0.977 0.91329 0.898

-0.010 0.99199 0.990 0.98197 0.980 0.90182 0.891

0.010 0.99199 0.990 0.98197 0.989 0.90182 0.892

0.250 0.99292 0.992 0.98407 0.985 0.91329 0.912

0.750 0.98998 0.993 0.97878 0.992 0.92595 0.942

Table 2
Time Series: Small Blocks Asymptotic Relative Efficiency

According to the information sandwich method (as in expression (3)), the
asymptotic variance of the small blocks estimator is the ratio between (34)
and (35), both of which we have calculated explicitely.

Although having the analytical form of the variance above is very appealing,
the calculations leading to it are very involved. In addition, these derivations
make extensive use of the specific form of the Small Blocks assumptions and
simple structure of the inverse block covariance matrix. Therefore, in the rest
of the paper, we will just concentrate on numerical evaluations.

Numerical results for several partitions of the time series (5, 10 and 50 blocks)
and various values of φ are reported by Table 2, under the columns labeled
“Theory”. Also, these calculations are accompanied by results from a simula-
tion study with 1000 replications (under the columns labeled “Sim.”)

A close analysis of the results presented in Table 2 indicates that the Small
Blocks estimator is asymptotically highly efficient when compared to the max-
imum likelihood estimator. We notice a slight decrease in efficiency with the
decrease of block sizes. This is due to the block independence assumption
being most likely violated by configurations consisting of small blocks. Also,
we note that simulation based results agree with the theoretical calculations
(modulo simulation induced error). These observations lead us to conclude
that the Small Blocks method produces asymptotically highly efficient esti-
mators, while considerably decreasing computation time when compared to
the classical maximum likelihood estimation.

3.4 Hybrid Estimator

In this subsection, we assume the same setting as in the previous two sub-
sections, but now consider the Hybrid estimator. The Hybrid negative pseudo
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log likelihood function is

pHybrid(φ) = pmeans(φ) +
B∑

j=1

pcondj
(φ) , (36)

where pmeans(φ), is given in Section 3.2 by (21) and pcondj
(φ) is the negative

block conditional log likelihood, whose construction is explained here.

For block j, let us denote by XK−1
j = (X(j−1)K+1, . . . , XjK−1) the vector of

all but one observation. The following argument follows identically for any
block j, but we illustrate it here for the first block because of its notational
simplicity.

In Section 3.2 we denoted the block average by X∗
1 = 1

K

∑K
i=1Xi. It follows

that the joint distribution of XK−1
1 and the group average X∗

1 has the form

(XK−1
1 , X∗

1 ) ∼ N

0,

UK−1 τ

τT η


 (37)

and that the conditional distribution of XK−1
1 given X∗

1 is given by

(XK−1
1 | X∗

1 ) ∼ N
(
τ

η
X∗

1 , UK−1 − τ η−1τT

)
. (38)

Here UK−1 is the covariance matrix of an AR(1) time series of length K − 1,
(see (14)), whose inverse is given by expression (16) and the determinant is
σ

2 (K−1)
ε

1−φ2 . Also, η = Var[X∗
1] = γ∗0 =

[
2φK+1−2φ−Kφ2+K
K2 (1−φ)2 (1−φ2)

]
σ2

ε as given by (21), and

τ = Cov[XK−1
1 ,X∗

1] = (τi)1≤i≤K−1, where

τi =
γi−1 + γi−2 + · · ·+ γ0 + γ1 + · · ·+ γK−i

K
=

1 + φ− φi − φK−i+1

K (φ2 − 1) (φ− 1)
σ2

ε .

(39)

If we denote by V (φ)cond1 the conditional covariance matrix for the first block,
we can calculate its determinant and inverse as:

|V −1
cond1

(φ)| = 2φK+1 −Kφ2 − 2φ+K

σ
2 (K−1)
ε (1− φ)2

and
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V −1
cond1

(φ) =
1

σ2
ε



2 1− φ 1 . . . 1 1 1 + φ

1− φ 2 + φ2 1− φ . . . 1 1 1 + φ

1 1− φ 2 + φ2 . . . 1 1 1 + φ
...

...
...

...
...

...
...

1 1 1 . . . 2 + φ2 1− φ 1 + φ

1 1 1 . . . 1− φ 2 + φ2 1

1 + φ 1 + φ 1 + φ . . . 1 + φ 1 φ2 + 2φ+ 2



.

Since the form of the block conditional covariance matrix is independent of
the block number, we omit the index in the following derivations. Also, denote
the conditional mean for block j by µcondj .

Henceforth, from (21), (36) and (38) the Hybrid negative pseudo log likelihood
function has the form:

pHybrid(φ) =−1

2

{
log |V −1

means|+X∗TV −1
meansX

∗ +B log |Vcond|

+
B∑

j=1

(
XK−1

j − µcondj

)T
V −1

cond

(
XK−1

j − µcondj

)}
. (40)

The Hybrid estimator, denoted by φ̂3, minimizes the function in (40), whose
first and second derivatives with respect to φ are denoted by ∂φpHybrid(φ) and
∂2

φpHybrid(φ).

To simplify further notation, denote by

g(φ) = log |Vmeans|+B log |Vcond| , (41)

by w′
ij, w

′′
ij, v

′
ij, v

′′
ij the (i, j) entry of ∂φV

−1
cond(φ), ∂2

φV
−1
cond(φ), ∂φV

−1
means(φ),

∂2
φV

−1
means(φ), and by µ′

condj

i , µ′′
condj

i the i-th element of ∂φµ
condj(φ) and ∂2

φµ
condj(φ)

respectively. Then the first derivative of the pseudo log likelihood function,
modulo fixed constants, is given by:

∂φpHybrid(φ)∼= ∂φg(φ) +
1

K2

B∑
j=1

B∑
i=1

K∑
`=1

K∑
m=1

v′ijX(i−1)K+`X(j−1)K+m

+
B∑

j=1

K−1∑
`=1

K−1∑
m=1

w′
`mX(j−1)K+`X(j−1)K+m

18



− 2
B∑

j=1

K−1∑
`=1

K−1∑
m=1

(
w′

`mX(j−1)K+` µ
condj
m + w`mX(j−1)K+` µ

′ condj

m

)

+ 2
B∑

j=1

K−1∑
`=1

K−1∑
m=1

(
w`mµ

′ condj

` µcondj
m + w′

`mµ
condj

` µcondj
m

)
(42)

while the second derivative is:

∂2
φpHybrid(φ) = ∂2

φg(φ) +
1

K2

B∑
j=1

B∑
i=1

K∑
`=1

K∑
m=1

v′′ijX(i−1)K+`X(j−1)K+m

+
B∑

j=1

K−1∑
`=1

K−1∑
m=1

w′′
`mX(j−1)K+`X(j−1)K+m

− 2
B∑

j=1

K−1∑
`=1

K−1∑
m=1

(w′′
`mX(j−1)K+` µ

condj
m + w`mX(j−1)K+` µ

′′ condj

m )

+ 4
B∑

j=1

K−1∑
`=1

K−1∑
m=1

(w′
`mX(j−1)K+` µ

′ condj

m + w′
`m µ

′ condj

` µcondj
m )

+ 2
B∑

j=1

K−1∑
`=1

K−1∑
m=1

(w`m µ
′ condj

` µ′
condj

m + w`m µ
condj

` µ′′
condj

m )

+
B∑

j=1

K−1∑
`=1

K−1∑
m=1

w′′
`m µ

condj

` µcondj
m .

Further notational simplifications are possible if we recall that

µ
condj

` = τ ∗`

K∑
p=1

X(j−1)K+p where τ ∗` =
τ`
Kη

and we rewrite all the terms containing conditional means in the above sums
as, for example, the last one:

B∑
j=1

K−1∑
`=1

K−1∑
m=1

w′′
`m µ

condj

` µcondj
m =

B∑
j=1

K−1∑
`=1

K−1∑
m=1

K∑
p=1

K∑
q=1

w′′
`mτ

∗
` τ

∗
mX(j−1)K+pX(j−1)K+q .

Since for an AR(1) time series we have that E[XtXt′ ] = φ|t−t′|

1−φ2 σ
2
ε , it follows that

the expected value of the second derivative of pHybrid(φ) is now expressed as a
function of φ and the data only. We shall refer to it as P2(φ) ≡ E[∂2

φpHybrid(φ)].

Further on, using the expansion (13) in (42), we find

∂φpHybrid(φ) = ∂φg(φ) +
∑

{r,s: r≤s}
aN,r,sξr ξs (43)
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where
aN,r,s = a

(1)
N,r,s + a

(2)
N,r,s + a

(3)
N,r,s + a

(4)
N,r,s (44)

and

a
(1)
N,r,s = σ2

ε

B∑
j=1

B∑
i=1

K∑
`=η

K∑
m=ν

v′ijφ
(i+j−2)K+l+m−r−s ,

a
(2)
N,r,s = σ2

ε

B∑
j=1

K−1∑
`=λ∗

K−1∑
m=ν∗

w′
`m φ

2(j−1)K+l+m−r−s ,

a
(3)
N,r,s = −2σ2

ε

B∑
j=1

K−1∑
`=λ∗

K−1∑
m=1

K∑
p=ν

(w′
`m τ

∗
m + w`m τ

∗
m
′)φ2(j−1)K+l+p−r−s and

a
(4)
N,r,s = σ2

ε

B∑
j=1

K−1∑
`=1

K−1∑
m=1

K∑
p=λ

K∑
q=ν

(2 w`m τ
∗
`
′ τ ∗m + w′

`m τ
∗
` τ

∗
m)φ2(j−1)K+p+q−r−s .

The summation lower bounds are defined as η = f1(i, r,K), λ = f1(j, r,K),
λ∗ = f2(j, r,K), ν = f1(j, s,K), and ν∗ = f2(j, s,K) where f1 is defined in
(24) and f2 is given by:

f2(j, r,K) =


1 if r − (j − 1)K ≤ 1 ,

r − (j − 1)K if 1 < r − (j − 1)K ≤ K − 1 ,

K + 1 if r − (j − 1)K ≥ K .

(45)

The conditions stated by Theorem 2 are satisfied, and we obtain that

P1(φ) ≡ Var[∂φpHybrid(φ)] = 2
∑
r

a2
N,r,r +

∑
{r,s: r<s}

a2
N,r,s .

Therefore, according to the information sandwich technique, we compute the
asymptotic variance of the Hybrid estimator as:

Var[φ̂3] = P−1
2 (φ)P1(φ)P−1

2 (φ) . (46)

Table 3 presents the numerical results obtained for various values of φ, under
the columns labeled Theory. Calculations are performed for an AR(1) time
series of length 500, divided into various number of blocks (5, 10 and 50), and
several values of the autoregressive parameter φ. Under the columns labeled
“Sim.”, we present results obtained through a simulation study based on 1000
iterations. We note immediately that the simulated results concur with the
theoretical calculations, modulo the simulation induced error.

It is remarkable that, as illustrated by Table 3, the Hybrid estimator is very
efficient asymptotically, when compared to the maximum likelihood estimator.
There is a slight decrease in efficiency when block sizes are small. Nevertheless,
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B=5 K=100 B=10 K=50 B=50 K=10

φ Theory Sim. Theory Sim. Theory Sim.

-0.750 0.99953 0.999 0.99665 0.996 0.92267 0.943

-0.250 0.99802 0.998 0.97725 0.977 0.91373 0.921

-0.010 0.99495 0.995 0.97028 0.971 0.89989 0.898

0.010 0.99457 0.995 0.97033 0.970 0.89739 0.897

0.250 0.99203 0.992 0.97385 0.972 0.91409 0.903

0.750 0.99134 0.991 0.98952 0.990 0.91800 0.922

Table 3
Time Series: Hybrid Asymptotic Relative Efficiency

the relative efficiency remains above 90% even in the least favorable cases, and
this seems to be consistently true across the full range of φ.

3.5 Concluding remarks regarding the three proposed estimators

As depicted in Tables 1, 2 and 3, among the three estimators suggested by
Caragea and Smith [8] the Big Blocks estimator has the lowest asymptotic
relative efficiency, in spite of achieving the greatest reduction in computation
time. Its inferiority is a consequence of the fact that this method ignores the
inter-block correlations.

The surprising element of this analysis is that the Small Blocks estimator
seems to perform as well as the Hybrid estimator. Both theoretical and simu-
lation based results indicate that, for example, the Hybrid estimator is more
efficient for larger absolute values of the true autoregressive parameter (which
is due to the fact that this method takes into account the inter-block corre-
lation, which is stronger for large values of φ). The Small Blocks estimator
is more efficient for values of φ closer to 0, but the difference between the
asymptotic performance of the two estimators not significant.

Although results are not explicitly shown in the paper, we have also taken
a close look at the bias for the three estimators for the situations illustrated
by the simulation study. It appears that the bias for the big blocks estimator
is much larger than that of the small blocks and hybrid estimators. The bias
for the former seems to increase as the size of the blocks increases, which
is intuitive (the larger the block size, the more local information is lost by
aggregation) while the bias for the latter remains very close to zero throughout
the various block sizes considered here (and basically indistinguishable from
the bias associated with the MLE estimator).
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The application of the expansion method to the one-dimensional context of
the first order autoregressive process provides valuable insight. It confirms
that the Big Blocks approach is not recommended on its own except for cer-
tain situations, but it is one of the main components of the Hybrid method.
The structure of the coefficients in the expansions of the derivatives of the
pseudo-likelihood functions as quadratic sums of independent normal random
variables allows generalization to higher dimensional setups, for which we pro-
vide an illustration in the following section.

4 Application of the Expansion Method to Two-Dimensional Au-
toregressive Processes on a Lattice

The purpose of this section is to illustrate how the methods of the paper can
be extended to a higher-dimensional process. Once again, the calculations that
the method involves are highly intricate, and for this reason, we restrict our
detailed calculations to a single simple model. Our motivation and justification
for doing this is that by calculating asymptotic efficiencies for this example, we
can suggest some general guidelines for comparisons among the three methods,
that should be applicable to more general classes of spatial processes.

4.1 General description of the two-dimensional AR(1) process and the Max-
imum Likelihood Estimator

Consider a two-dimensional process Xij on a N1×N2 lattice which is assumed
to be the composition of two AR(1) time series (one on each of the two di-
rections defining the lattice) with the same autoregressive parameter, φ. It
follows that the covariance structure is given by the Kronecker product of the
one-dimensional covariances:

Cov[Xij, Xt`] = γ
(1)
it γ

(2)
j` = σ2

Xφ
|i−t|+|j−`|, (47)

where |φ| < 1 to ensure stationarity. Thus, we can represent the spatial process
Xij as

Xij − φ(Xi+1,j +Xi,j+1) + φ2Xi+1,j+1 = εij , (48)

where εij = σX(1− φ2)ξij are independent N [0, σ2
ε ], σ

2
ε = σ2

X(1− φ2)2. Alter-
natively, we write the process in the form

Xij = σε

i∑
r=−∞

j∑
s=−∞

φi+j−r−sξi,j . (49)

Note that the processes we have defined here lie within the general class of
spatial processes on lattices first defined by Whittle [29].
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The calculations leading to the maximum likelihood estimator in this case rely
on the joint normal distribution of the observations {Xij, 1 ≤ i ≤ N1, 1 ≤
j ≤ N2}, with mean 0 and covariance given by (47) (assume σ2

ε is known.)
Using the Kronecker product notation, the covariance matrix of this process
is UN1 ⊗UN2 , where UNi

for any Ni is given by (14). It follows that the inverse
covariance matrix has the form U−1

N1
⊗U−1

N2
, with U−1

Ni
(for any Ni) with entries

u∗ij as given by (16). Then the negative log likelihood function, modulo fixed
constants, is given by

N1∑
i=1

N2∑
j=1

N1∑
t=1

N2∑
`=1

XijXt`u
∗
iju

∗
t` − log |U−1

N1
⊗ U−1

N2
|, (50)

4.2 Alternative Estimators

In this section we consider the spatial counterpart of the one dimensional
grouping introduced before: assume that we divide the N1 × N2 locations
on the lattice into B1 × B2 disjoint subregions, each consisting of K1 × K2

locations. That is, N1 = B1 ×K1 and N2 = B2 ×K2.

In each of the three cases examined in this section, derivations of the asymp-
totic variances use the information sandwich technique. To calculate the ex-
pected value of the second derivative of the pseudo log likelihood function,
we exploit the properties of the underlying AR(1) covariance structure, in
particular (47), as we have for the one-dimensional setup.

To calculate the variance of the first derivative, we first expand it, using (49),
as a sum of quadratic forms of independent normal random variables:∑

{r1,s1,r2,s2 : (r1,r2)<(s1,s2)}
aN,r1, r2, s1, s2 ξr1r2ξs1s2 . (51)

Once the coefficients for the quadratic forms are identified, we apply Theorem
2 to calculate the mean and the variance of the gradient as:

mN =
∑

{r1,r2}
aN,r1,r1,r2,r2 and

vN = 2
∑

{r1,r2}
a2

N,r1,r1,r2,r2
+

∑
{r1,s1,r2,s2 : (r1,r2)<(s1,s2)}

a2
N,r1,r2,s1,s2

. (52)

Since the general methodology of deriving the asymptotic properties of the
alternative estimators is similar to the one-dimensional case, in the subse-
quent sections we give only the form of the coefficients of the quadratic forms,
aN,r1,r2,s1,s2 , for each of the three situations considered in this paper, in the
spatial context.
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4.2.1 Big Blocks Estimator

This estimator is the spatial analog of the one described in Section 3.2. The Big
Blocks pseudo-likelihood function is defined as the likelihood of the subregional
means:

pmeans(φ) =
1

K2
1K

2
2

B1∑
i1=1

B2∑
i2=1

B1∑
j1=1

B2∑
j2=1

v(i1−1)B2+i2 , (j1−1)B2+j2

×
K1∑

`1=1

K2∑
`2=1

K1∑
m1=1

K2∑
m2=1

X(i1−1)K1+`1,(i2−1)K2+`2X(j1−1)K1+m1,(j2−1)K2+m2

+ log(|Vmeans|) , (53)

where Vmeans with entries vij denotes the B1B2 × B1B2 covariance matrix of
the regional means, the derivative of its inverse is denoted by ∂φV

−1
means and

has entries v′ij. Using (48) we expand the first derivative with respect to φ
of the function in (53) as a sum of quadratic forms of i.i.d. normal random
variables. The coefficients of this expansion are given by:

a
(1)
N,r1,s1,r2,s2

= σ4
ε

B1∑
i1=1

B2∑
i2=1

B1∑
j1=1

B2∑
j2=1

K1∑
`1=η1

K2∑
`2=η2

K1∑
m1=ν1

K2∑
m2=ν2

v′(i1−1)B2+i2 , (j1−1)B2+j2

×φ(i1+j1−2)K1+(i2+j2−2)K2+`1+`2+m1+m2−r1−s1−r2−s2 , (54)

and we apply Theorem 2 to obtain the variance of the first derivative of the
pseudo-likelihood function. The calculation of the expected value of the second
derivative of (53) is using extensively the covariance structure of the AR(1)
process.

The expression for the asymptotic variance was calculated numerically for
several values of φ and two lattice configurations: a 32× 32 lattice with (B1 =
B2 = 8,K1 = K2 = 4) and a 27×27 lattice, with (B1 = B2 = 9,K1 = K2 = 3).
These results are presented in Tables 4 and 5. We note that the Big Blocks
estimator is relatively inefficient compared with the MLE, but its efficiency
seems to increase while block sizes decrease. These observations are consistent
with what was noted in the one-dimensional setup.

4.2.2 Small Blocks Estimator

This subsection assumes the same setting as for the Big Blocks, with the ad-
ditional assumption that the B1 × B2 blocks are independent. As in Section
3.3, the relatively simpler structure of the pseudo-likelihood function enables
us to study more closely some of the theoretical aspects regarding the asymp-
totic distribution of the Small Blocks estimator. If we denote by UK1K2 the
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K1K2 × K1K2 covariance matrix corresponding to any block, whose inverse
has entries u∗ij given by (16), it follows from equation (50) that the negative
pseudo log likelihood function, modulo fixed constants, is given by

pSmallBlocks(φ) =
B1∑

j1=1

B2∑
j2=1

K1∑
`1=1

K2∑
`2=1

K1∑
m1=1

K2∑
m2=1

u∗(m1−1) K2+`1, (m2−1) K2+`2

×X(j1−1) K1+`1, (j2−1) K2+`2 X(j1−1) K1+m1, (j2−1) K2+m2

+ (B1 +B2) log |UK1K2| . (55)

Note that the function in equation (55) is a degree four polynomial in the
unknown parameter φ (this is a direct consequence of the correlation structure
for the two-dimensional AR(1) process). It is straightforward to check that
the first two conditions stated by Amemiya [2] to ensure consistency of a local
maximum are satisfied here (regarding the parameter space, measurability on
the entire parameter space and continuity in an open neighborhood of the
true value of the parameter). Also, as stated in subsection 2.2, for the last
condition to be satisfied, we need to have a bounded expectation of the first
order derivative in a neighborhood of the true parameter value. This condition
is satisfied by the function in equation (55), therefore we conclude that the
two-dimensional Small Blocks estimator is consistent.

The rest of the calculations follow the expansion technique ideas. Using (48)
we expand (55) as a sum of quadratic forms of independent normal random
variables of the form (51) . If we denote by u∗ij

′ the (i, j)-th entry of ∂φU
−1
K1K2

the corresponding coefficients of the expansion are given by:

aN,r1,s1,r2,s2 = σ4
ε

B1∑
j1=1

B2∑
j2=1

K1∑
`1=λ1

K2∑
`2=λ2

K1∑
m1=ν1

K2∑
m2=ν2

u∗′(`1−1)K2+`2 , (m1−1)K2+m2

×φ2(j1−1)K1+2(j2−1)K2+`1+`2+m1+m2−r1−s1−r2−s2 . (56)

Here the lower bounds for summation are given by λ1 = f1(j1, r1, K1), λ2 =
f1(j2, r2, K2), ν1 = f1(j1, s1, K1), and ν2 = f1(j2, s2, K2), where f1 and f2 are
defined by (24) and (45).

The asymptotic variance was calculated numerically for several values of φ,
and two lattice configurations, as shown in Tables 4 and 5. It appears that
the Small Blocks estimator performs very well when compared to the classi-
cal maximum likelihood estimator. The loss in efficiency is remarkably low,
even for configurations with small block sizes, which is the most unfavorable
situation. Given the gain in the computational time achieved when using this
estimation method, we conclude that the Small Blocks estimator is a good
alternative to the MLE for large data sets.
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4.2.3 Hybrid Estimator

In this subsection we consider the same setting described in the previous
two, but concentrate on the Hybrid estimator, the two-dimensional analog
of the one described in detail in Section 3.4. The covariance structure under
the conditional independence assumption is much more complicated than in
section 4.2.2. As a consequence, the identification of the coefficients is more
involved for this case, which is why we omit the technical details and only
list them here in the form that they are used by the information sandwich
technique. Notation is just a generalization of what we defined in the one-
dimensional setting (Section 3.4):

aN,r1,s1,r2,s2 = a
(1)
N,r1,s1,r2,s2

+ a
(2)
N,r1,s1,r2,s2

+ a
(3)
N,r1,s1,r2,s2

+ a
(4)
N,r1,s1,r2,s2

,

where a
(1)
N,r1,s1,r2,s2

is given in expression (54) and

a
(2)
N,r1,s1,r2,s2

= σ4
ε

B1∑
j1=1

B2∑
j2=1

K1∑
`1=λ1

K
`1
2∑

`2=λ∗2

K1∑
m1=ν1

K
m1
2∑

m2=ν∗2

w′
(`1−1)K2+`2,(m1−1)K2+m2

× φ2(j1−1)K1+2(j2−1)K2+`1+m1+`2+m2−r1−r2−s1−s2 ,

a
(3)
N,r1,s1,r2,s2

= σ4
ε

B1∑
j1=1

B2∑
j2=1

K1∑
`1=λ1

K
`1
2∑

`2=λ∗2

K1∑
m1=1

K
m1
2∑

m2=1

K1∑
p1=ν1

K2∑
p2=ν2

[
w′

(`1−1)K2+`2,(m1−1)K2+m2
τ ∗(m1−1)K2+m2

+w(`1−1)K2+`2,(m1−1)K2+m2 τ
∗′
(m1−1)K2+m2

]
× φ2(j1−1)K1+2(j2−1)K2+`1+p1+`2+p2−r1−r2−s1−s2 ,

and

a
(4)
N,r1,s1,r2,s2

=σ4
ε

B1∑
j1=1

B2∑
j2=1

K1∑
`1=λ1

K
`1
2∑

`2=λ∗2

K1∑
m1=ν1

K
m1
2∑

m2=1

K1∑
p1=λ1

K2∑
p2=λ2

K1∑
q1=ν1

K2∑
q2=ν2

[
2 w(`1−1)K2+`2,(m1−1)K2+m2

× τ ∗′(`1−1)K2+`2
τ ∗(m1−1)K2+m2

+ w′
(`1−1)K2+`2,(m1−1)K2+m2

τ ∗(`1−1)K2+`2
τ ∗(m1−1)K2+m2

]
×φ2(j1−1)K1+2(j2−1)K2+p1+q1+p2+q2−r1−r2−s1−s2 .

Here the summation lower bounds are given by: η1 = f1(i1, r1, K1), η2 =
f1(i2, r2, K2), λ1 = f1(j1, r1, K1), λ2 = f1(j2, r2, K2), ν1 = f1(j1, s1, K1), ν2 =
f1(j2, s2, K2), λ

∗
2 = f3(j2, r2, K

`2
2 ) and ν∗2 = f3(j2, s2, K

m2
2 ); functions f1 and

f2 are defined by (24) and (45), f3 is defined as:

f3(r, j, k) =

 f1(r, j, k) if k = K2,

f2(r, j, k) if k = K2 − 1 ,
(57)
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while the summation upper bounds are defined as:

K`1
2 =

K2 if `1 < K1,

K2 − 1 if `1 = K1,
and Km1

2 =

K2 if m1 < K1,

K2 − 1 if m1 = K1.
(58)

The asymptotic relative efficiency was calculated numerically for various val-
ues of φ and two lattice configurations. The results are presented in Tables
4 and 5. We conclude that, as for the one-dimensional setup, the Hybrid es-

θ Big Blocks Small Blocks Hybrid

Efficiency Efficiency Efficiency

-0.750 0.00483 0.80386 0.80357

-0.500 0.03378 0.81132 0.81286

-0.250 0.10160 0.77615 0.78069

-0.010 0.19665 0.75005 0.75482

0.010 0.20543 0.75005 0.75468

0.250 0.31412 0.77615 0.77780

0.500 0.42135 0.81132 0.80970

0.750 0.49732 0.80386 0.80803
Table 4
Relative efficiency of estimators for AR(1)× AR(1) model with B1 = B2 = 8, K1 =
K2 = 4.

timator is asymptotically highly efficient relative to the maximum likelihood
estimator. This, together with the significant reduction of the computational
time, recommends it as a good estimation alternative for high dimensional
data sets.

4.3 Conclusions

From the numerical results displayed in Tables 4 and 5 we can conclude that
the performance of the simplest of the estimators, the Big Blocks, is inferior
to that of the other two estimators. Its asymptotic efficiency relative to the
MLE increases as φ gets larger. This is caused by the dependence between
farther observations being stronger in this situations, which is a feature that
the Big Blocks method is designed to capture. The other two estimators, the
Small Blocks and Hybrid are performing very well when compared to the max-
imum likelihood estimator (efficiencies ranging between 68 and 80%), with no
clear choice between the two. Numerical studies by Caragea and Smith [8]
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θ Big Blocks Small Blocks Hybrid

Efficiency Efficiency Efficiency

-0.750 0.25675 0.76861 0.79230

-0.500 0.04912 0.75964 0.76768

-0.250 0.12744 0.70510 0.71818

-0.010 0.26449 0.66674 0.68148

0.010 0.27570 0.66674 0.68129

0.250 0.39986 0.70510 0.71302

0.500 0.50212 0.75964 0.75779

0.750 0.57861 0.76861 0.77155
Table 5
Relative efficiency of estimators for AR(1)× AR(1) model with B1 = B2 = 9, K1 =
K2 = 3.

have suggested that there are some situations (spatial models where the range
parameter is very large) in which the Big Blocks method is the best of the
three. They have also provided further numerical comparisons of the Small
Blocks and Hybrid methods that suggest that the qualitative conclusions of
the present theoretical study hold for a much wider range of spatial models.
Caragea and Smith [8] have found the Hybrid estimator to be clearly supe-
rior for some settings (for example, the case of the Matérn model with small
shape parameter). Another advantage of the Hybrid estimator, as illustrated
by Caragea and Smith [8], is that the estimated standard errors from inverting
the approximate observed information matrix are closer to the true standard
errors than those derived by the Small Blocks method.

5 Further Discussion and Concluding remarks

This paper was intended to take a closer look at the asymptotic properties
of the alternative estimators proposed by Caragea and Smith [8]. Since cal-
culations for the general multivariate normal processes is too complicated to
permit the derivation of analytical formulae for the asymptotic variances, we
considered two particular cases: the autoregressive process of first order in one
and two dimensions. Although the covariance structure was much simpler in
these two instances than for the general spatial processes that motivated the
development of the alternative estimators, derivation of closed form, easy to
manipulate formulae for the asymptotic variances was not possible. Instead,
we produced and analyzed numerical results for our theoretical calculations
for several arbitrarily chosen situations. From these considerations (Tables 1
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through 5) we conclude that the Big Blocks estimator lacks in asymptotic
efficiency, in spite of the reduction in the computational effort, in almost all
circumstances. The other two estimators perform very well asymptotically.

In the present work, we have chosen to concentrate on the statistical rather
than computational efficiency, although the trade-off between the two could be
a factor in practical applications. One may consider other conditioning choices
for the hybrid estimator, that could lead to an even greater reduction in the
computational effort. Such alternatives include conditioning on an arbitrarily
chosen single observation or on the average of a smaller subset of observations
within each block. It should be noted, however, that the statistical properties
of such resulting estimators should be examined in a similar fashion to the
one presented in this work.

We emphasize here that the examples illustrated by Tables 4 and 5 consider
only moderate size lattices. Even though for the specific model under consid-
eration there are already several known ways of approximating the likelihood
efficiently (see Whittle [29] or Guyon [13]) or of simplifying calculations of the
exact likelihood (see Zimmerman [30]), for the most general models without an
exploitable structure, using the Cholesky decomposition is the most efficient
method available to calculate the determinant and inverse of the covariance
matrix. This bears the implication that using the maximum likelihood estima-
tion method for a grid of 32×32 locations is on the edge of what is feasible on
a single processor desktop computer. Different considerations might apply in a
totally different computing environments (like parallel computing). However,
these calculations could be, in principle, performed for a much larger number
of locations.

The greatest shortcoming associated with these theoretical calculations is that
they rely heavily on the assumption that the first derivative of the pseudo-
likelihood function can be expanded as a sum of quadratic forms of indepen-
dent normal variables, which is not immediate for much more general spatial
processes. However, the conclusions drawn here should remain valid for more
complex processes, at least in the sense of recommending the Hybrid estima-
tor as a reasonable competitor to the maximum likelihood estimator, for large
spatial data sets.
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