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Motivation

We show negative daily returns (Rt = log(Xt−1/Xt) where Xt is
closing price on day t) of 1982–2001 stock prices in three com-
panies, Pfizer, GE and Citibank. We are interested in assessing
the risk of a portfolio that includes these stocks.

Typical questions are

1. How to determine Value at Risk, i.e. the amount which might
be lost in a portfolio of assets over a specified time period
with a specified small probability,

2. Dependence among the extremes of different series, and ap-
plication to the portfolio management problem,

3. Modeling extremes in the presence of volatility.

3



Univariate Methods

Univariate methods of extreme value analysis broadly fall into

three categories,

1. sample maximum methods, exploiting the “three types” of

limiting distributions of extreme value theory,

2. threshold approaches, using all exceedances over a high thresh-

old, often employing the generalized Pareto distribution,

3. the point process approach (Smith 1989, Coles 2001) in

which all values and time points above a threshold are plotted

as a 2-dimensional point process, and various models fitted.
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All of these methods have been applied to financial data to as-

sess, e.g. the drop in price that a stock may suffer with speci-

fied probability (e.g. 0.01) over a specified time period (e.g. 1

month) — the value at risk problem. A practical difficulty is how

to deal with volatility. One solution is to apply extreme value

analysis to the residuals from a GARCH model instead of directly

to returns (McNeil and Frey 1999). We will present a variant of

that idea here. The main topic of this talk, however, is to extend

these methods to consider multivariate aspects of the problem,

including short-term dependence between the extremes of a time

series that may not be captured by GARCH-type behavior.
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Multivariate Extremes

Basic definitions: Suppose Xi = (Xi1, ...., XiD), i = 1,2, ... is

an i.i.d. sequence of D-dimensional random vectors. For each

d ∈ {1, ..., D}, let Mnd = max{Xid, 1 ≤ i ≤ n}.

If normalizing constants and, bnd and a D-dimensional distribution

function G exist such that as n →∞,

Pr

{
Mnd − bnd

and
≤ xd, 1 ≤ d ≤ D

}
→ G(x1, ..., xD)

then G is called a multivariate extreme value distribution.
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Representations: Pickands, de Haan and Resnick, Deheuvels

(1970s) gave general representation formulae for MEVDs (see

Resnick’s (1987) book for full description). However these for-

mulae are too general to be useful for statistics.

Statistics: Much work on parametric subfamilies (Tawn, Coles,

....) and on nonparametric estimation methods but these work

well only for small D.

Problem 1: What to do about large D? (e.g. D ≈ 100 for a

typical portfolio)

Problem 2: How to extend these methods to take into account

also time-series dependence within each series?
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Max-Stable Processes

Suppose {Yid, i = 0,±1,±2, d = 1, ..., D} is a D-dimensional time

series with discrete time index i.

W.l.o.g. we may assume Pr{Yid ≤ y} = e−1/y for 0 < y < ∞
(unit Fréchet assumption). In practice, this would be achieved

only above a given threshold, by first fitting a GPD to the

marginal distribution above a threshold, but the properties we

are interested in can all be expressed in terms of (multivariate)

exceedances of high thresholds.

The process is max-stable if for any n ≥ 1, N ≥ 1, yid ≥ 0 for

i = 1, ..., n, d = 1, ..., D,

PrN {Yid ≤ Nyid, 1 ≤ i ≤ n, 1 ≤ d ≤ D}
= Pr {Yid ≤ yid, 1 ≤ i ≤ n, 1 ≤ d ≤ D} .
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Why consider max-stable processes?

1. Natural generalization of multivariate extremes to infinite di-

mensions

2. (Smith and Weissman). Suppose we are interested in calcu-

lating the multivariate extremal index — a natural measure

of the clustering and dependency of extremes in a multivari-

ate time series. Under some mixing conditions, if the finite-

dimensional distributions of our time series converge to those

of a max-stable process, then the multivariate extremal index

of our time series is the same as that of the limiting max-

stable process. Therefore, for statistical modeling based on

exceedances over a high threshold, we may as well assume

we are observing the max-stable process directly.
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Representations of Max-Stable Processes

The process Yid is said to be a multivariate maxima of moving

maxima (M4) process if

Yid =
∞

max
`=1

∞
max

k=−∞
a`,k,dZ`,i−k,

where Z`,i are independent unit Fréchet for all `, i; a`,k,d ≥ 0; and

∞∑
`=1

∞∑
k=−∞

a`,k,d = 1, d = 1, ..., D.

For this process,

Pr {Yid ≤ yid, i = 1, ..., n, d = 1, ..., D}

= exp

− ∞∑
`=1

∞∑
m=−∞

n−m
max

k=1−m

D
max
d=1

a`,k,d

ym+k,d

 .

Corollary. The M4 process is max-stable.
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The converse property: Can all max-stable processes be approx-

imated by M4 processes?

If we exclude certain degenerate cases,the answer is yes. This di-

rectly generalizes a result of Deheuvels (1983) for one-dimensional

max-stable processes, which in turn gneeralizes the representa-

tion of multivariate extreme value distributions due to Deheuvels

(1978).
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Relationship to Multivariate Regular Variation

Consider a multivariate vector Y. Thomas Mikosch defined MRV

by the property

lim
N→∞

Pr
{

Y
N ∈ A

}
Pr {|Y| ≥ N}

= µ(A)

where µ is some measure on RD − {0} satisfying a homogeneity

property.

Let us apply this when the components of Y are Yid, i = 1, ..., n, d =

1, ..., D and |Y| = maxn
i=1 maxD

d=1 Yid.
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Suppose Yid = max` maxk a`,k,dZ`,i−k > N for some i ∈ {1, ..., n}, d ∈
{1, ..., D}.

Fact: If N →∞, then with probability tending to 1, there will be

a single index pair (`∗, m∗) such that

Yid = a`∗,i−m∗,dZ`∗,m∗, i = 1, ..., n, d = 1, ..., D,

where [
n

max
i=1

D
max
d=1

a`∗,i−m∗,d

]
Z`∗,m∗ > N.

If maxn
i=1 maxD

d=1 a`∗,i−m∗,d = a`∗,i∗−m∗,d∗, then for 1 ≤ i ≤ n, 1 ≤
d ≤ D,

Yid

Yi∗d∗
=

a`∗,i−m∗,d

a`∗,i∗−m∗,d∗
. (1)

The measure µ is degenerate, concentrating all its mass on vec-

tors Y/|Y| that satisfy (1) for some `∗, m∗. We call such rela-

tionships signature patterns.
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Estimation

The existence of signature patterns essentially means that stan-

dard methods such as maximum likelihood are not applicable.

Zhang and Smith (2004, to appear) showed that for a long

enough series, all the parameters are exactly identifiable from

the signature patterns, but this is obviously a pathological re-

sult, and could not apply to real time series that arise in fields

such as finance.

Earlier methods were based on simpler forms of model,but ran

into essentially the same difficulty. For example, the one-dimensional

model Yi = maxk ai−kZk is call the moving maximum process.

The max ARMA processes of Davis and Resnick (1989, 1993)

are special cases of this.
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Hall, Peng and Yao (2002) estimated moving maxima processes

through the empirical distribution function, thus avoiding the

issue of degeneracy.

Zhang (2002, PhD thesis) generalized this to M4 processes.

Another idea is to write the model with noise, e.g.

Xi = Yi + εi

where Yi is MM and εi are normal noise, and solve by MCMC

techniques. In PhD work in progress, F. Chamú has considered

the use of particle filters to solve this problem.

A surprising fact: the MM(1) process is second-order Markov.
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Yt = max{αZt, (1− α)Zt−1}

I. Yt = αZt > (1− α)Zt−1, Yt−1 = αZt−1;
Yt

Yt−1
> α

1−α.

II. Yt = αZt, Yt−1 = (1− α)Zt−2; no restriction on Yt
Yt−1

.

III. Yt = (1− α)Zt−1, Yt−1 = αZt−1;
Yt

Yt−1
= α

1−α.

IV. Yt = (1− α)Zt−1, Yt−1 = (1− α)Zt−2 > αZt−1;
Yt

Yt−1
< α

1−α.

Yt
Yt−1

> α
1−α implies I or II; Zt = Yt

α .

Yt
Yt−1

= α
1−α implies III; Zt < Yt

α .

Yt
Yt−1

< α
1−α implies IV or II; Zt−1 <

Yt−1
α .
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In all cases the future prediction of Ys, s > t depends on Ys, s ≤ t

only though Yt−1 and Yt.

In very recent work, Chamú has shown that the MM(2) process

is third-order Markov.

A plausible conjecture?? Every M4 process with finitely many

non-zero coefficients is Kth order Markov for some finite K.

If true, this could be very helpful in generating approximate con-

ditional distributions for the particle filter.
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Heuristic Method

1. For each univariate series, fit the standard EV model to ex-
ceedances above a threshold and transform the margins to
unit Fréchet.

2. Fix a finite range for k (here, –2 to 2) and an upper bound
for ` (here, 25)

3. For each local maximum above the threshold, define a signa-
ture pattern from the ratio of neighbouring Y values to the
maximum. In our example, D = 3 and there are 607 local
maxima, so we end up with 607 candidate signature patterns
in 15 dimensions.

4. Use K-means clustering to group the 607 signature patterns
into 25 clusters (less than a minute in S-PLUS)

5. Estimate a`,k,d coefficients by aggregating signature patterns
across clusters.
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Extremes in Financial Time Series

We return to the three series of daily returns for Pfizer, GE and

Citibank, considered in the introduction.

Initial analysis: Fit a GARCH(1,1) model to each series, divide

the series by the estimated volatility to get an approximately

volatility-standardized series.

Then perform a threshold analysis on each series, transform se-

ries above the threshold to unit Fréchet margins.

Our interest is in the dependence (both between and within

series) among the resulting transformed threshold exceedances

— specifically, what kind of clustering occurs among these ex-

ceedances?
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On this transformed scale, pairwise scatterplots are shown of the

three series against each other on the same day (top 3 plots),

and against series on neighboring days. The two numbers on

each plot show the expected number of joint exceedances based

on an independence assumption, and the observed number of

joint exceedances.
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Also shown is a plot of Fréchet exceedances for the three series

on the same day, normalized to have total 1, plotted in barycen-

tric coordinates. The three circles near the corner points P, G

and C correspond to days for which that series along had an

exceedance.

An M4 process was fitted to these three series by the technique

described on an earlier slide.
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Finally, we attempt to validate the model by calibrating observed

vs. expected probabilities of extreme events under the model.

The “extreme event” considered is that there is at least one

exceedance of a specific threshold u by one of the three series in

one of the next 10 days after a given day.

To make the comparison honest, the period of study is divided

into four periods each of length just under 5 years. The uni-

variate and multivariate EV model is fitted to each of the first

three 5-year period, and used to predict extreme events in the

following period.

The final plot shows observed (dashed lines) and expected (solid

lines) counts for a sequence of thresholds u. There is excellent

agreement between the two curves.
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Conclusions

The representation in term of M4 processes contains the possi-

bility of estimating both within-series and between-series depen-

dence as part of the same model.

The key step in this method is the use of K-means clustering

to identify a measure in a high-dimensional simplex of normal-

ized exceedances. In contrast, existing methods of estimating

multivariate extreme value distributions usually only work in low

dimensions (up to 5 or so).

Ultimately the test of such methods will be whether they can be

used for more reliable risk calculations than established methods

such as RiskMetrics. The numerical example at the end shows

that good progress has been made, but there are also many

variations on the basic method which deserve to be explored.
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