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I. CONSTRUCTING A MAP OF ANNUAL AVERAGES

OF FINE PARTICULATE MATTER

Based on Smith, Kolenikov and Cox, Journal of Geophysical Re-

search, 2003.

II. SOME THEORETICAL ASPECTS OF BAYESIAN

SPATIAL PREDICTION

Work currently in progress, with Z. Zhu, J. Ibrahim and E.

Shameldin (UNC).
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Background to Part I

A new set of air pollution standards, first proposed in 1997, is

finally being implemented by the U.S. Environmental Protection

Agency (EPA). One of the requirements is that the mean level

of fine particulate matter (PM2.5) at any location should be no

more than 15 µg/m3. A network of several hundred monitors

has been set up to assess this.

The present study is based on 1999 data for a small portion of

this network, 74 monitors in North Carolina, South Carolina and

Georgia. We converted the raw values to weekly averages, but

even so more than 1
4 of the data are missing. The EPA also

recorded a “land-use” variable, classified as one of five types of

land-use: agricultural (A), commercial (C), forest (F), industrial

(I) and residential (R).
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Exploratory data analysis

The first issue considered is whether to make any transforma-

tion, such as square roots or logarithms, of the raw PM2.5 val-

ues. We show a plot of sample variance against sample mean,

across all 74 stations, for each of three transformations, (a) no

transformation, (b) square root transformation, (c) logarithmic

transformation. On the basis that (b) is the closest fit to a

constant-variance model, the rest of the analysis is based on the

square root of PM2.5 as a variance-stabilizing transformation.
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The time trend

The time trend was estimated both as a B-spline smooth curve

and (more simply) by using a weekly indicator variable to repre-

sent the overall mean level for that week.

Fig. (a) shows both versions of the fitted time trend, with all

data points superimposed. Also shown are the same fitted time

trend curves, but with different portions of the data superim-

posed, (b)–(d) corresponding to each of the three states, (e)–(i)

corresponding to each of the five land-use variables. The results

show a significant discrepancy between states, with Georgia val-

ues generally higher than the overall mean, while the land-use

variables show significant variations in the directions one would

expect.
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These comparisons suggest the model

yxt = wt + ψx + θx + ηxt (1)

in which yxt is the square root of PM2.5 in location x in week

t, wt is a week effect, ψx is the spatial mean at location x (in

practice, estimated through a thin-plate spline representation),

θx is a land-use effect corresponding to the land-use as site x,

and ηxt is a random error.

So far we have ignored temporal and spatial correlations among

the ηxt, but we consider these next.
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Spatial and temporal dependence

Take residuals from preceding linear regression.

Plots of autocorrelations suggest series are uncorrelated in time

but not in space.
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We show variograms of residuals from simple linear regression,

where a number of subsets of the data (classified by state and

also by season) have been identified to look for comparability of

the estimated variogram among different subsets of data. Key

points are

• Substantial inhomogeneity among subgroups despite initial

variance stabilization

• Does not seem to follow standard nugget-range-sill shape
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We fit the power law variogram

γ(h) =
{
0 if h = 0,

θ0 + θ1h
λ if h > 0,

(2)

where θ0 > 0, θ1 > 0, 0 ≤ λ < 2.
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To fit this model by maximum likelihood, we need the concept

of generalized covariances, introduced by Matheron (1973). For

modern references see Cressie (1993), Chilès and Delfiner (1999)

or Stein (1999). In the present context the key formula is the fol-

lowing: for an intrinsically stationary process defined by a semi-

variogram γ,

Cov

∑
x
νxηx,t,

∑
x′
κx′ηx′,t


=

∑
x

∑
x′
νxκx′G(||x− x′||),

provided
∑
x νx =

∑
x′ κx′ = 0. Here G is known as the general-

ized covariance function: however for an intrinsically stationary

process, it suffices to take G = −γ.
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Practical implementation:

In (1), replace each yxt by y∗xt = yxt− 1
nt

∑
x′ yx′t where the second

sum is over all x′ values available in week t; nt is the number of

such x′ values in a given week. With some further simplifications

we replace (1) by

y∗xt = ψ∗x + θ∗x + η∗xt (3)

where

Cov{η∗x,t, η∗x′,t} =
1

nt

∑
x1

γ(||x− x1||)

+
1

nt

∑
x1

γ(||x′ − x1||)− γ(||x− x′||)

−
1

n2
t

∑
x1

∑
x2

γ(||x1 − x2||). (4)

The model defined by (2)—(4) may now be fitted by maximum

likelihood.
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There are additional complications because of the missing values,

which mean that nt and the fitted covariance matrix are different

from week to week. The present data set is relatively small

and we were still able to compute exact maximum likelihood,

but some variants of the EM algorithm (Little and Rubin 1987,

McLachlan and Krishnan 1997) were also used, and remain the

focus of further research.
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Results

The model (3) was fitted to the data values from which each

weekly mean had been subtracted. The residuals η∗xt were as-

sumed independent at different time points but with spatial co-

variances given by (4) with (2). As an example of the results, the

maximum likelihood of the parameter θ2 was 0.92 with standard

error 0.097. Since a linear variogram corresponds to θ2 = 1, this

shows that the spatial dependence is not significantly different

from a linear variogram.
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The fitted model was then used to construct a predicted surface,

with estimated root mean squared prediction error (RMSPE), for

each week of the year and also for the average over all weeks.

The latter is of greatest interest in the context of EPA standards

setting.
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We show the predicted surface and RMSPE for week 33 (the

week with highest average PM2.5) and overall for the annual

mean. WE also show shows the estimated probability that any

particular location exceeds the 15 µg/m3 annual mean standard.

These maps are based on kriging the residuals η∗xt in (2) and

then combining them with the estimated fixed effects for ψ∗x and

θ∗x, transforming back to the original scale of the data for the

actual plots. The RMSPE values used here take into account

the averaging of kriged values, but do not take account of the

additional uncertainty in estimating the parameters θ1 and θ2.

Fig. 6 is based on the assumption that (on a square root scale)

the difference between the predicted and true values, scaled by

the RMSPE, has a standard normal distribution.
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It can be seen that substantial parts of the region, including the

western portions of North and South Carolina and virtually the

whole of the state of Georgia, appear to be in violation of the

standard. Of the three major cities marked on the last figure,

Atlanta and Charlotte are clearly in the “violation” zone; Raleigh

is on the boundary of it.

In future work, we hope to extend this analysis to other parts

of the country (this will certainly involve consideration of non-

stationary spatial models), to analyze more recent data, and to

consider the associated “network design” questions.
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II. SOME THEORETICAL ASPECTS OF SPATIAL

PREDICTION

We assume data follow a Gaussian random field with mean and

covariance functions represented as functions of finite-dimensional

parameters.

Define the prediction problem as(
Y
Y0

)
∼ N

[(
Xβ

xT0β

)
,

(
V wT

w v0

)]
(5)

where Y is an n-dimensional vector of observations, Y0 is some

unobserved quantity we want to predict, X and x0 are known

regressors, and β is a p-dimensional vectors of unknown regres-

sion coefficients. For the moment, we assume V, w and v0 are

known.
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Where notationally convienient, we also define Y ∗ =

(
Y
Y0

)
and

write (5) as

Y ∗ ∼ N [X∗β, V ∗]. (6)
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Specifying the Covariances

The most common and widely used spatial models (stationary
and isotropic) assume the covariance between components Yi and
Yj is a function of the (scalar) distance between them, C(dij).
For example,

Cθ(d) = σ exp

(
−
d

ρ

)
, (7)

where θ = (σ, ρ) (exponential),

Cθ(d) = σ exp

−
(
d

ρ

)2
 , (8)

where θ = (σ, ρ) (Gaussian),

Cθ(d) =
σ

2ν−1Γ(ν)

(
2ν1/2d

ρ

)ν
Kν

(
2ν1/2d

ρ

)
, (9)

where Kν is a modified Bessel function and we have θ = (ν, σ, ρ)
(Matérn).
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Estimation

Model of form

Y ∼ N [Xβ, V (θ)]

where the unknown parameters are (β, θ) and V (θ) is a known

function of finite-dimensional parameters θ.

Methods of estimation:

1. Curve fitting to the variogram, based on residuals from OLS

regression.

2. Maximum likelihood (MLE)

3. Restricted maximum likelihood (REML)
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The Main Prediction Problem

Assume model (5) where the covariances V, w, v0 are known but

β is unknown. The classical formulation of universal kriging asks

for a predictor Ŷ0 = λTY that minimizes σ2
0 = E

{
(Y0 − Ŷ0)

2
}

subject to the unbiasedness condition E
{
Y0 − Ŷ0

}
= 0.

The classical solution:

Ŷ0 = wTV −1Y + (x0 −XTV −1w)T (XTV −1X)−1XTV −1Y,

σ2
0 = v0 − wTV −1w+ (x0 −XTV −1w)T (XTV −1X)−1(x0 −XTV −1w).
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In traditional geostatistics, the covariances are estimated in a

separate estimation step assuming a parametric model such as

one of (7)–(9). However, the estimation is then ignored in ap-

plying universal kriging. This is potentially a problem, because

we would expect the prediction variance to be larger if we took

into account the uncertainty in estimating θ.

Bayesian methods provide a potential way round this difficulty,

because in a Bayesian analysis we integrate out the predictive

density with respect to the posterior density of all the unknown

parameters. This is straightforward to implement via MCMC and

is starting to be implemented in some widely available packages

(GeoR, GeoBugs). However, this raises the question of what

are the sampling properties of such procedures. The aim of the

present research is to investigate such questions via asymptotic

theory.
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Bayesian Reformulation of Universal Kriging

Assume the model (5) or equivalently (6). Suppose β (the only

unknown parameter, for the moment) has a prior density which

is assumed uniform across Rp. The Bayesian predictive density

of Y0 given Y is then

p(Y0 | Y ) =

∫
f(Y ∗ | β)dβ∫
f(Y | β)dβ

. (10)

This may be rewritten in the form

p(Y0 | Y ) = (2π)−1/2|V ∗|−1/2|X∗TV ∗−1X∗|−1/2e−G
∗2/2

|V |−1/2|XTV −1X|−1/2e−G2/2
. (11)

where G2 = Y T{V −1 − V −1X(XTV −1X)−1XTV −1}Y is the gen-

eralized residual sum of squares for the vector Y and G∗2 is the

same thing for the vector Y ∗.
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However, with some algebraic manipulation we can show,

|V ∗||X∗TV ∗−1X∗|
|V ||XTV −1X|

= σ2
0, (12)

G∗2 = G2 +
(Y0 − Ŷ0)

2

σ2
0

. (13)

The Bayesian predictive density then becomes

p(Y0 | Y ) =
1√

2πσ2
0

exp

−1

2

(
Y0 − Ŷ0

σ0

)2
 (14)

Thus, in the case where β is the only unknown, we have rederived
universal kriging as a Bayesian predictor.

However, because of the usual (frequentist) derivation of univer-
sal kriging, it follows that in this case, Bayesian procedures have
exact frequentist properties, e.g. a Bayesian 95% prediction in-
terval for Y0 will indeed cover the true Y0 in 95% of repeated
samples.
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Now consider the case where θ is also unknown. We assume θ

has a prior density π(θ), independent of β.

The Bayesian predictive density of Y0 given Y is now

p(Y0 | Y ) =

∫ ∫
f(Y ∗ | β, θ)π(θ)dβdθ∫ ∫
f(Y | β, θ)π(θ)dβdθ

= (2π)−1/2
∫
|V ∗|−1/2|X∗TV ∗−1X∗|−1/2e−G

∗2/2π(θ)dθ∫
|V |−1/2|XTV −1X|−1/2e−G2/2π(θ)dθ

.

Using (12) and (13), p(Y0 | Y ) may be rewritten

∫
|V |−1/2|XTV −1X|−1/2e−G

2/2(2πσ2
0)

−1/2 exp

{
−1

2

(
Y0−Ŷ0
σ0

)2
}
π(θ)dθ∫

|V |−1/2|XTV −1X|−1/2e−G2/2 · π(θ)dθ
.

(15)
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(15) is of the form

p(Y0 | Y ) = ψ̃ =

∫
e`n(θ)ψ(θ)π(θ)dθ∫
e`n(θ)π(θ)dθ

(16)

where e`n(θ) is the restricted likelihood of θ given the data Y and

ψ(θ) = (2πσ2
0)

−1/2 exp

{
−1

2

(
Y0−Ŷ0
σ0

)2
}

is the predictive density

we are trying to evaluate, written as a function of θ.

The function e`n(θ) may be alternatively derived from purely fre-

quentist considerations as the likelihood of a set of orthogonal

contrasts in the original X space. However, it has been known

since Harville (1974) that this is equivalent to the Bayesian

derivation as an integrated likelihood with respect to β. The best

regarded (frequentist) estimator of θ is the so-called restricted

maximum likelihood or REML estimator θ̂ which maximizes `n(θ).
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Solution of (16): Use Laplace approximation.

First, some notation. Let

Ui =
∂`n(θ)

∂θi
,

Uij =
∂2`n(θ)

∂θi∂θj
,

Uijk =
∂3`n(θ)

∂θi∂θj∂θk
,

where θi, θj... denote components of the vector θ.

Suppose inverse of {Uij} matrix has entries {U ij}.
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We shall introduce other quantities such as Q(θ) and ψ(θ) that

are functions of θ, and where needed, we use suffixes to de-

note partial differentiation, for example Qi = ∂Q/∂θi, ψij =

∂2ψ/∂θi∂θj. All these quantities are evaluated at the true θ unless

denoted otherwise. The maximum likelihood estimator (MLE)

is denoted θ̂ with components θ̂i. The MLE of ψ is ψ̂ = ψ(θ̂).

Any expression with a hat on it, such as Ûijk, means that it is to

be evaluated at the MLE θ̂ rather than the true value θ.
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Using summation convention, define

D =
1

2
UijkU

ikUj`ψ` −
1

2
(ψij + 2ψiQj)U

ij (17)

and let D̂ denote the same expression where all terms have hats.

With these conventions, an application of Laplace’s integral for-

mula leads to

ψ̃ = ψ̂+ D̂, (18)

accurate to Op(n−1).

Apply to predictive inference: recast as predictive distribution

function (rather than density) so

ψ(y;Y, θ) = Φ

(
y − λTY

σ0

)

where Ŷ0 = λTY and σ2
0 are the point prediction and MSPE under

universal kriging.
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ψ′(y;Y, θ) =
1

σ0
Φ′
[
y − λTY

σ0

]
,

ψ′′(y;Y, θ) =
1

σ2
0

Φ′′
[
y − λTY

σ0

]
,

ψi(y;Y, θ) =
∂

∂θi

{
y − λTY

σ0

}
Φ′
[
y − λTY

σ0

]
,

ψij(y;Y, θ) =
∂2

∂θi∂θj

{
y − λTY

σ0

}
Φ′
[
y − λTY

σ0

]

+
∂

∂θi

{
y − λTY

σ0

}
∂

∂θj

{
y − λTY

σ0

}
·

· Φ′′
[
y − λTY

σ0

]
.
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Define a maximum likelihood or “plug-in” formula by ψ̂(y;Y ) =

ψ(y;Y, θ̂). The Bayesian predictor, ψ̃(y;Y ), is defined by (16) in

which ψ(θ) is replaced by ψ(y;Y, θ). Equations (17) and (18) so

far give an approximation to ψ̃(y;Y ), accurate to Op(n−1).

Now let us consider the corresponding quantile problem. Suppose

we are interested in determining the value yP for which the event

Y0 ≤ y has conditional probability P , given Y . Here P is a fixed

constant between 0 and 1. We can define two natural estima-

tors by inverting the maximum likelihood and Bayesian predictive

distribution functions. Specifically, ŷP satisfies ψ̂(ŷP ;Y ) = P and

ỹP satisfies ψ̃(ỹP ;Y ) = P . In the case P1 = α/2, P2 = 1 − α/2,

the intervals (ŷP1
, ŷP2

) and (ỹP1
, ỹP2

) are natural candidates for

a 100(1 − α)% prediction interval for y0. One of the questions

of interest is what is the true coverage probability of either of

these intervals in repeated sampling — it would be ideal if the

coverage probability was exactly 1− α.
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For ŷP , we simply substitute maximum likelihood estimator for

unknown parameters throughout, and obtain the exact solution

ŷP = λ̂TY + σ̂0Φ
−1(P ) (19)

where Φ−1(·) is the inverse standard normal distribution function.

For ỹP , a Taylor expansion based on (18) suggests the approxi-

mation

ỹP = ŷP −
D̂(ŷP )

ψ̂′(ŷP ;Y )
. (20)

Here D̂(ŷP ) is defined by (17) where we evaluate all functions

of θ at θ = θ̂ and, in addition, evaluate the function ψ(y;Y, θ) at

y = ŷP ; we also define ψ̂′(y;Y ) = ψ′(y;Y, θ̂). Since D̂ = Op(n−1),

it follows that (20) is also accurate to Op(n−1).
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Future Work

1. Investigate the computational properties of this procedure as

an alternative to MCMC.

2. Bias in coverage probability — how far do the true cover-

age probabilities of either the likelihood or Bayesian prediction

intervals differ from their nominal levels?

3. Design of a network: a reasonable criterion for design of a

monitoring network might be to do it to minimize the expected

length of a Bayesian prediction interval (of some quantity of

particular interest, such as the statewide average of particular

matter). The present approach allows for a combination of esti-

mative and predictive criteria which is in line with recent research

in this field (Zhu, 2002, U. Chicago thesis).
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