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BACKGROUND

During the past decade, many papers have appeared in the cli-

matology literature documenting increases in the frequency of

extreme meteorological events. Much of this literature has been

concerned with precipitation extremes.

Also, it is widely believed that such increases are directly linked to

global warming (specifically, that increases in greenhouse gases

are responsible for increases in frequency of extreme events, as

well as increases in overall average temperatures).

Major feature of current reports on climate science, e.g. IPCC,

CCSP

In this talk, I explore systematically the development of extreme

value theory and spatial statistics models for this problem.
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CURRENT METHODOLOGY
(see e.g. Groisman et al. 2005)

Most common method is based on counting exceedances over a
high threshold (e.g. 99.7% threshold)

• Express exceedance counts as anomalies from 30-year mean
at each station

• Average over regions using “geometric weighting rule”: first
average within 1o grid boxes, then average grid boxes within
region

• Calculate standard error of this procedure using exponen-
tial spatial covariances with nugget (range of 30–500 km,
nugget-sill ratio of 0–0.7).

• Increasing trends found in many parts of the world, nearly
always stronger than trends in precipitation means, but spa-
tially and temporally heterogeneous. Strongest increase in
US extreme precipitations is post-1970, about 7% overall
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Criticisms of current methodology

• Exceedance-counting approach too limited to measure many

quantities of practical interest, e.g. return levels

• Ignores seasonality

• “Geometric weighting” approach for calculating regional av-

erage trends is theoretically inferior to choosing optimal weights

based on the covariance function (a.k.a. kriging, optimal in-

terpolation,...), though it’s not clear how much this matters

• They don’t attempt to construct spatial maps of the trend,

though they could, and should if they want to learn about

small-scale variation

• Ignores other covariates that could be highly relevant, e.g.

El Niño, other circulation indices such as NAO, AO, AMO,

PDO, etc. (but I’m going to ignore those as well)
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DATA SOURCES

• NCDC Rain Gauge Data (Groisman 2000)

– Daily precipitation from 5873 stations

– Select 1970–1999 as period of study

– 90% data coverage provision — 4939 stations meet that

• NCAR-CCSM climate model runs

– 20 × 41 grid cells of side 1.4o

– 1970–1999 and 2070–2099 (A2 scenario)

• PRISM data

– 1405 × 621 grid, side 4km

– Elevations

– Mean annual precipitation 1970–1997
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Some thoughts on Bayesianism, frequentism and all that

• I am not a frequentist

– We have a dataset of ∼10,000 observations at each of

5,000 stations. In what sense is this one replication of a

hypothetically infinite sequence of experiments?

• But I’m not sure I meet Jay Kadane’s definition of a Bayesian

either

– My personal probabilities about climate change are cer-

tainly different from Dick Lindzen’s. They are also very

different from Phil Jones’s.

– Yet I believe it’s possible to make probabilistic statements

about scientific issues without depending excessively on

personal beliefs
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• Most of my statements about standard errors, significance

levels, etc. can be reinterpreted as statements about the

posterior distribution (under a flat prior), and that is probably

the best interpretation

• There is a wide body of theoretical and empirical literature

that suggests that in large samples, the role of the prior is

unimportant

• To most people, n = 50,000,000 looks like a large sample

• But there is another point of view by which the sample is of

size 1

• What is the correct sample size here?
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Statements of uncertainty are starting to appear in the press.

“In fresh drafts of a summary of its next report, the group, the

Intergovernmental Panel on Climate Change, has said that it

is more than 90 percent likely that global warming since 1950

has been driven mainly by the buildup of carbon dioxide and

other heat-trapping greenhouse gases, and that more warming

and rising sea levels are on the way.

In its last report, published in 2001, the panel concluded that

there was a 66 to 90 percent chance that human activities were

driving the most recent warming.”

(Andrew Revkin in the New York Times, January 20 2007)

What does this mean?
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BASICS OF EXTREME VALUE THEORY

We start with the extreme value limit laws (Fisher and Tippett
1928; Gnedenko 1943)

Let X1, X2, ..., be independent identically distributed (IID) ran-
dom variables with distribution function F .

Let Mn = max(X1, ..., Xn). Then

Pr{Mn ≤ x} = Fn(x) → 0

for any x such that F (x) < 1.

To obtain interesting results renormalize: Find an > 0, bn,

Pr
{
Mn − bn

an
≤ x

}
= Fn(anx+ bn)

→ G(x)

where G is a nondegenerate limiting distribution function.
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The Three Extreme Value Types

Type I (Gumbel)

Λ(x) = exp(−e−x), −∞ < x <∞.

Type II (Fréchet)

Φα(x) =
{
0, if x ≤ 0,

exp(−x−α), if x ≥ 0 (α > 0).

Type III (Weibull)

Ψα(x) =

{
exp{−(−x)α}, if x ≤ 0 (α > 0),

1, if x ≥ 0.

Generalized EV Distribution:

G(x) = exp

−{1 + ξ
x− µ

ψ

}−1/ξ

+


(x+ = max(x,0)) where −∞ < µ <∞, 0 < ψ <∞, −∞ < ξ <∞.
The limit ξ → 0 corresponds to the Gumbel case.
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Exceedances Over Thresholds

Exceedances over a high threshold u.

Fu(y) = Pr{X ≤ u+ y | X > u}

=
F (u+ y)− F (u)

1− F (u)
. (y > 0)

Look for scaling constants {cu} so that as u ↑ ωF = sup{x :
F (x) < 1},

Fu(zcu) → H(z)

where H is nondegenerate. In that case, H must be of form

H(z) =

1−
(
1 + ξz

σ

)−1/ξ

+
, if ξ 6= 0,

1− e−z/σ, if ξ = 0,

where σ > 0 and −∞ < ξ <∞.

This is the Generalized Pareto Distribution (Pickands 1975).
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Statistical Approaches

Peaks Over Thresholds

Basic idea: fix a high threshold u say, and fit the Generalized
Pareto distribution (GPD) to exceedances over the threshold.

May need separate analysis to model the probability of crossing
the threshold as a function of covariates, e.g. logistic regression.

Extensions of the basic methodology:

• Selecting the threshold

• Incorporating covariates

• Dependence in the time series
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Statistical Approaches, Continued

Point process approach

The expected number of exceedances in a box of the form of A

is assumed to be

Λ(A) = (t2 − t1)Ψ(y;µ, ψ, ξ)

where

Ψ(y;µ, ψ, ξ) =

(
1 + ξ

y − µ

ψ

)−1/ξ

+
.

In practice, allow parameters to depend on covariates.
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The main technique used in this talk is a generalization of the

point process approach in which the extreme value parameters

µ, ψ, ξ are replaced by time-dependent parameters µt, ψt, ξt. In

this way, I am able to model both seasonal variation and trend.

This technique is initially applied one station at a time. Later,

the results will be combined across stations to produce a spatial

map.
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Seasonal models without trends

General structure:

µt = θ1,1 +
K1∑
k=1

(
θ1,2k cos

2πkt

365.25
+ θ1,2k+1 sin

2πkt

365.25

)
,

logψt = θ2,1 +
K2∑
k=1

(
θ2,2k cos

2πkt

365.25
+ θ2,2k+1 sin

2πkt

365.25

)
,

ξt = θ3,1 +
K3∑
k=1

(
θ3,2k cos

2πkt

365.25
+ θ3,2k+1 sin

2πkt

365.25

)
.

Call this the (K1,K2,K3) model.

Note: This is all for one station. The θ parameters will differ at
each station.
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Models with trend

Add to the above:

• Overall linear trend θj,2K+2t added to any of µt (j = 1),
logψt (j = 1), ξt (j = 1). Define K∗

j to be 1 if this term is
included, o.w. 0.

• Interaction terms of form

t cos
2πkt

365.25
, t sin

2πkt

365.25
, k = 1, ...,K∗∗

j .

Typical model denoted

(K1,K2,K3)× (K∗
1,K

∗
2,K

∗
3)× (K∗∗

1 ,K∗∗
2 ,K∗∗

3 )

Eventually use (4,2,1)×(1,1,0)×(2,2,0) model (27 parameters
for each station)
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The N-year return value is defined as the value that is exceeded

in any given year with probability 1
N . It is calculated by finding

yN numerically to solve

t2∑
t1

(
1 + ξt

yN − µt

ψt

)−1/ξt
= − log

(
1−

1

N

)
where t = t1, ..., t2 are the days within the year of interest.

Defined like this, I can treat YN itself as a time-dependent vari-

able that possibly increases over the time period of the study,

and compare the N-year return level for 1999 with that for 1970

(and later, that for 2070–2099 with 1970–1999 form a climate

model).

For convenience, I fix N = 25 in subsequent discussion.
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SPATIAL SMOOTHING

Let Zs be field of interest, indexed by s (typically the logarithm
of the 25-year RV at site s, or a log of ratio of RVs. Taking logs
improves fit of spatial model, to follow.)

Don’t observe Zs — estimate Ẑs. Assume

Ẑ | Z ∼ N [Z,W ]

Z ∼ N [Xβ, V (φ)]

Ẑ ∼ N [Xβ, V (φ) +W ].

for known W ; X are covariates, β are unknown regression param-
eters and φ are parameters of spatial covariance matrix V . The
covariates here include elevation and mean annual precipitation.

• φ by REML (Matérn covariances with nugget)

• β given φ by generalized least squares

• Predict Z at observed and unobserved sites by kriging
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Continental USA divided into 19 regions
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Trends across 19 regions (measured as change in log RV25) for 8 differ-
ent seasonal models and one non-seasonal model with simple linear trends.
Regional averaged trends by geometric weighted average approach.
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Map of 25-year return values (cm.) for the years 1970–1999
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Root mean square prediction errors for map of 25-year return

values for 1970–1999
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Ratios of return values in 1999 to those in 1970
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Root mean square prediction errors for map of ratios of 25-year

return values in 1999 to those in 1970
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∆1 S1 ∆2 S2 ∆1 S1 ∆2 S2
A –0.01 .03 0.05∗∗ .05 K 0.08∗∗∗ .01 0.09∗∗ .03
B 0.07∗∗ .03 0.08∗∗∗ .04 L 0.07∗∗∗ .02 0.07∗ .04
C 0.11∗∗∗ .01 0.10 .03 M 0.07∗∗∗ .02 0.10∗∗ .03
D 0.05∗∗∗ .01 0.06 .05 N 0.02 .03 0.01 .03
E 0.13∗∗∗ .02 0.14∗ .05 O 0.01 .02 0.02 .03
F 0.00 .02 0.05∗ .04 P 0.07∗∗∗ .01 0.11∗∗∗ .03
G –0.01 .02 0.01 .03 Q 0.07∗∗∗ .01 0.11∗∗∗ .03
H 0.08∗∗∗ .01 0.10∗∗∗ .03 R 0.15∗∗∗ .02 0.13∗∗∗ .03
I 0.07∗∗∗ .01 0.12∗∗∗ .03 S 0.14∗∗∗ .02 0.12∗ .06
J 0.05∗∗∗ .01 0.08∗∗ .03

∆1: Mean change in log 25-year return value (1970 to 1999) by

kriging

S1: Corresponding standard error (or RMSPE)

∆2, S2: same but using geometrically weighted average (GWA)

Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.
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Return value map for CCSM data (cm.): 1970–1999
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Return value map for CCSM data (cm.): 2070–2099
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Estimated ratios of 25-year return values for 2070–2099 to those

of 1970–1999, based on CCSM data, A2 scenario
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RMSPE for map in previous slide
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Extreme value model with trend: ratio of 25-year return value in

1999 to 25-year return value in 1970, based on CCSM data
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∆3 S3 ∆4 S4 ∆3 S3 ∆4 S4
A 0.16∗∗ .07 0.24∗∗ .10 K –0.08∗∗∗ .02 –0.11∗ .05
B 0.14∗∗∗ .04 0.12∗∗∗ .06 L –0.04 .04 –0.03 .06
C 0.02 .05 –0.14 .11 M 0.01 .03 0.00 .08
D –0.06 .04 –0.15 .10 N 0.06∗∗ .02 0.05 .06
E –0.07∗ .03 –0.09 .08 O –0.03 .04 –0.06 .07
F –0.07∗ .04 –0.03 .05 P –0.01 .04 –0.07 .07
G 0.03 .03 0.08∗ .04 Q –0.04 .04 –0.03 .07
H 0.11∗∗∗ .03 0.08 .06 R –0.17∗∗∗ .03 –0.06 .08
I –0.02 .04 –0.05 .07 S 0.00 .04 0.02 .05
J –0.15∗∗∗ .03 –0.16∗∗ .06

∆3: Mean change in log 25-year return value (1970 to 1999) for

CCSM, by kriging

SE3: Corresponding standard error (or RMSPE)

∆4, SE4: Results using GWA

Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.
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CONCLUSIONS

1. Focus on N-year return values — strong historical tradition
for this measure of extremes (we took N = 25 here)

2. Seasonal variation of extreme value parameters is a critical
feature of this analysis

3. Overall significant increase over 1970–1999 except for parts
of western states — average increase across continental US
is 7%

4. Kriging better than GWA

5. But... based on CCSM data there is a completely different
spatial pattern and no overall increase

6. Projections to 2070–2099 show further strong increases but
note caveat based on point 5

7. Decadal variations since 1950s show strongest increases dur-
ing 1990s.
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