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Raleigh News and Observer, this week 
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“…the recent drought was dominated by natural variability, a conclusion 
framed by discussion of differences between observed and modeled tropical 
SST trends over past decades.” 



Methods 
• Original paper by Stott, Stone and Allen (2004) 

– Defined FAR = 1 – P0/P1 where P0 and P1 are probabilities of extreme event 
under natural, anthropogenic scenarios 

– Could also consider risk ratio RR=P1/P0 
– Method used a combination of extreme value theory (GPD) and normal-

theory detection and attribution techniques 

• New Method by Pall et al. (2011) 
– No EVT – counting threshold exceedances in customized climate model 
– Data intensive 

• A variety of methods in recent climatology papers 
– Fischer-Knutti 2015: different perspective, not trying to compare observations 

with models, didn’t evaluate uncertainty of estimates 

• Other statistical approaches 
– Soyoung Jeon at this meeting 

• We also highlight the problem of projecting future extreme events 
(Christidis, Jones, Stott 2014; NRC report on Climate and Social Stress, 
2012) 

• Not much using methods of extreme value theory – objective of this talk is 
to examine where that could take us 
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Data 
• Observational data to 2012 from CRU (Climate Research Unit, 

University of East Anglia, UK) – monthly averages on 5ox5o grid 
boxes, aggregated to JJA average anomalies over 

– Europe: spatial averages over 10oW-40oE, 30oN-50oN (2003 value was 
1.92K but 2012 almost the same) 

– Russia: spatial averages over 30oE-60oE, 45oN-65oN (2010 value 3.65K) 

– Central USA (including Texas and Oklahoma): spatial averages over 
90oW-105oW, 25oN-45oN (2011 value 2.01K) 

• Climate model data from CMIP3 
– 14 climate models 

– Total of 64 control runs, 44 twentieth century runs, 34 future 
projections under A2 scenario 

– Same spatial regions as observational data, converted to anomalies 
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Europe Summer Mean Temperatures 
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Russia Summer Mean Temperatures 
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Central USA Summer Mean Temperatures 
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Approach for a Single Series 
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Bayesian Calculations 
• Focus on binary log of exceedance probability of threshold (BLOTEP) 

• Use models both with (red) and without (blue) trends 

• Use 80th (solid curve), 75th (dashed) and 85th (dot-dashed) percentiles for 
thresholds 
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What’s Next? 
• Obvious strategy at this point is to rerun the GEV calculation on the model data 

• But this runs into the scale mismatch problem: data plots shows that the models and 
observations are on different scales, so we should expect the extreme value parameters to 
be different as well 

• Requires a more subtle approach – hierarchical modeling 
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Proposed Hierarchical Model 
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Bayesian Statistics Details 
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Central USA Summer Mean Temperatures With Trend and 
Central 50% of Hierarchical Model Distribution 
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Post. Dens. for Binary Log Risk Ratio (BLORRAT) 
(numbers are for solid curves and equal weights; dashed curves allow 

for different weights between climate models and observations) 

  



  

 Changes in Projected Extreme Event Probabilities Over Time 
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Sensitivity Plots 

  

21 



A Proposal for Bivariate Extension 
• Motivation: dependence is important as well as 

marginal distributions 
– Different variables, e.g. temperature and precipitation 

– The same variable measured at different places 

– Using one meteorological variable as explanatory for 
another 

• We give preliminary analyses of two examples 
– Precipitation patterns in the south-west USA are highly 

correlated with those of a region of South America 
(Herweijer and Seager 2008) 

– There may have been a connection between the 2010 
Russian heatwave and the 2010 Pakistan floods (Lau and 
Kim 2012) 

– Focus here is on characterizing tail dependence 
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Russian Temperatures and Pakistan Precipitation 
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SW-USA and Uruguay/Argentina Precipitation 
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Methods 
  

• Focus on the proportion by which the 
probability of a joint exceedance is greater 
than what would be true under independence. 

• Method: Fit a joint bivariate model to the 
exceedances above a threshold on the unit 
Fréchet scale 

• Two models:  
Classical logistic dependence model (Gumbel 

and Mustafi 1967; Coles and Tawn 1991) 
The η-asymmetric logistic model (Ramos and 

Ledford 2009) 
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Results 
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What Next? 
• We have demonstrated an empirical tail dependence for 

the North and South American precipitations data, but 
not for Russian temperatures and Pakistan precipitation 

• To use this for future climate projections, need to show 
that the same phenomenon occurs in climate model 

– Likely to raise similar issues of “scale mismatch” (or 
“dependence mismatch”) 

– Possibility of using a hierarchical model in this case 

• The advantage of the Ramos-Ledford approach is that it’s 
a parametric model going beyond classical BEVT (but 
there are other approaches, such as the Heffernan-Tawn 
conditional approach) 
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Conclusions 
• Extreme value theory provides a viable method for 

estimating extreme event probabilities in the presence of 
a trend 

• For combining observations with climate models, we 
propose a hierarchical model that allows for systematic 
discrepancies between models and observations 

• For each of Russia 2010, Central USA 2011 and Europe 
2012 events, estimated risk ratio is at least 2.3, and it’s 
likely (probability at least .66) that the risk ratio is >1.5. 

• We also computed future projections of extreme event 
probabilities; sharp increase for Europe; much less so for 
the other two regions studied 

• Likely future work will involve bivariate or spatial 
dependence 
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