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Raleigh News and Observer, this week
Weather

Heat sets record in the Triangle; bus stops bake

Single-day
record for
June 16:
100°F in 2015

(and for June
15: 99°F)

One year old Elena Gonzales beats the oppressive heat a little differently than her family as she rests comfortably in a
hammock in the shade along the Eno River on Tuesday. The West Point on the Eno park in Durham was quite the popular
place as record breaking temperatures drew families to enjoy the cool waters. Chuck Liddy - cliddy@newsobserver.com
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Anthropogenic contribution to global
occurrence of heavy-precipitation
and high-temperature extremes

E. M. Fischer® and R. Knutti

Climate change includes not only changes in mean climate
but also in weather extremes. For a few prominent heatwaves
and heavy precipitation events a human contribution to their
occurrence has been demonstrated™®. Here we apply a similar
framework but estimate what fraction of all globally occurring
heavy precipitation and hot extremes is attributable to
warming. We show that at the present-day warming of 0.85°C
about 18% of the moderate daily precipitation extremes over
land are attributable to the observed temperature increase
since pre-industrial times, which in turn primarily results
from human influence®. For 2°C of warming the fraction of
precipitation extremes attributable to human influence rises
to about 40%. Likewise, today about 75% of the moderate
daily hot extremes over land are attributable to warming. It
is the most rare and extreme events for which the largest
fraction is anthropogenic, and that contribution increases
nonlinearly with further warming. The approach introduced
here is robust owing to its global perspective, less sensitive
to model biases than alternative methods and informative for
mitigation policy, and thereby complementary to single-event
attribution. Combined with information on vulnerability and
exposure, it serves as a scientific basis for assessment of global
risk from extreme weather, the discussion of mitigation targets,
and liability considerations.

changed, and FAR indicates the fraction attributable to humans.
‘Fraction of events’ throughout the text should be interpreted as
an anthropogenic contribution to the probability of such events,
rather than some events being anthropogenic and some not. We
base our estimates on well-defined percentiles of daily temperature
and precipitation derived from long pre-industrial control runs of
25 CMIP5 models (see models in Supplementary Table 1).

In response to increasing global temperatures, models project
more heavy precipitation days, as illustrated by histograms
aggregating daily precipitation (Fig. 1) across Northern Europe
and North America (see Methods). The simulated occurrence of
heavy precipitation days under present-day warming of 0.85°C
(blue lines) is only slightly higher than in pre-industrial conditions.
At a warming of 2 °C (red lines) the probability of the most extreme
cases, exceeding the pre-industrial 99.99%-quantile, increases by
about a factor of 1.5 to 3 depending on region and model (lower
panels). This implies that on average across the area an event
expected once every 10,000 days (about 30 years), in pre-industrial
conditions, is expected every 10 to 20 years at a 2°C warming.
The wet tail of the precipitation distribution becomes fatter; thus,
the PR increases most rapidly for the most intense and rarest
events (Fig. 1) at the expense of days with moderate, low or no
precipitation. This is consistent with the finding that in some
cases mean precipitation decreases (primarily owing to large-scale
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Figure 3 | Change in probability of heavy precipitation and hot extremes. a-f, Multi-model mean probability of exceeding the pre-industrial 99th
percentile of daily precipitation (a-¢) and temperature (d-f), relative to pre-industrial. Ratios are shown for 30-year periods in which the global mean
temperatures warmed 0.85 °C (present-day) (a,d), 2°C (b,e) and 3 °C (c,f) above pre-industrial conditions.



Causes and predictability of the 2011 to 2014

California drought
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“..the recent drought was dominated by natural variability, a conclusion
framed by discussion of differences between observed and modeled tropical
SST trends over past decades.”



Methods

Original paper by Stott, Stone and Allen (2004)

— Defined FAR =1 —P,/P, where P, and P, are probabilities of extreme event
under natural, anthropogenic scenarios

— Could also consider risk ratio RR=P,/P,

— Method used a combination of extreme value theory (GPD) and normal-
theory detection and attribution techniques

New Method by Pall et al. (2011)
— No EVT — counting threshold exceedances in customized climate model
— Data intensive

A variety of methods in recent climatology papers

— Fischer-Knutti 2015: different perspective, not trying to compare observations
with models, didn’t evaluate uncertainty of estimates

Other statistical approaches
— Soyoung Jeon at this meeting

We also highlight the problem of projecting future extreme events
(Christidis, Jones, Stott 2014; NRC report on Climate and Social Stress,
2012)

Not much using methods of extreme value theory — objective of this talk is
to examine where that could take us



Data

* Observational data to 2012 from CRU (Climate Research Unit,
University of East Anglia, UK) — monthly averages on 5°x5° grid
boxes, aggregated to JJA average anomalies over

— Europe: spatial averages over 10°W-40°E, 30°N-50°N (2003 value was
1.92K but 2012 almost the same)

— Russia: spatial averages over 30°E-60°E, 45°N-65°N (2010 value 3.65K)
— Central USA (including Texas and Oklahoma): spatial averages over
90°W-105°W, 25°N-45°N (2011 value 2.01K)

e Climate model data from CMIP3

— 14 climate models

— Total of 64 control runs, 44 twentieth century runs, 34 future
projections under A2 scenario

— Same spatial regions as observational data, converted to anomalies
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Russia Summer Mean Temperatures
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Central USA Summer Mean Temperatures
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Approach for a Single Series

Generalized Extreme Value Distribution (GEV) with covariates to represent trend
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e Peaks over threshold approach: fit GEV to exceedances over threshold u, treat
Y: < u as censored

e u chosen as one of 75th, 80th or 85th percentile
e Covariates {xy;, 1 < k < K} chosen to represent spline basis functions

e K chosen by AIC, no formal selection of threshold but run different thresholds
for comparison

e Bayesian predictive analysis: use MCMC to calculate a posterior density for the
probability of crossing a given high level in a given year
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Density
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Bayesian Calculations

Focus on binary log of exceedance probability of threshold (BLOTEP)
Use models both with (red) and without (blue) trends

Use 80th (solid curve), 75th (dashed) and 85t (dot-dashed) percentiles for
thresholds
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What’s Next?

Obvious strategy at this point is to rerun the GEV calculation on the model data

But this runs into the scale mismatch problem: data plots shows that the models and
observations are on different scales, so we should expect the extreme value parameters to
be different as well

Requires a more subtle approach — hierarchical modeling
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Proposed Hierarchical Model
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Bayesian Statistics Details

Model Specification
o (Mq,D1) ~WN,(A, m, M*, F), Wishart-Normal prior with density
o | D" D/2 exp [—Str {D1 (A 4+ F(My — M*)(My — M*)T)}].
e Given My, Dy, 619 .. 0(0.N) are IID ~ N,(My, D71).

e Given 0(17) Y(1.J) generated by GEV with parameters (1.7
(Y©b3) for j =0, if ==1)

e Similar structure for My, Dy etc.

e We can expand this model by defining 6% ~ N, (M, (¥'D1)~ ') where
1) represents departure from exchangeability (v = 1 is exchangeable).

However, ¥ is not identifiable — we can only try different values as a
sensitivity check.

Computation
o (My,Dq) | 6V 0N ~ WN,(A,m,M* F), where m = m + N, F =
F+ N,M* = (FM* +30, 9“5”) JE, A=A+ FM M T4+, gD _
FAr N+
e Metropolis update for (1) . #(1.N) given M;,D; and Y's
e Metropolis update for #(1.0) based on conditional density

exp {—"5 (600 — ﬂ.fl)T Dy (639 — _.wl)} L (609 y(©9)

where L is likelihood for 8(1:2) given data Y(©P%) gnd = =1
e Similar updates for = = 0 side of picture; up to 1,000,000 iterations

17



Central USA Summer Mean Temperatures With Trend and
Central 50% of Hierarchical Model Distribution
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Post. Dens. for Binary Log Risk Ratio (BLORRAT)

(numbers are for solid curves and equal weights; dashed curves allow
for different weights between climate models and observations)
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Probability

Changes in Projected Extreme Event Probabilities Over Time
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Sensitivity Plots
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Sensitivity plots for Europe. Left-hand figure: Plots of the posterior me-
dian probability of the extreme event for various weightings between models
and observations, represented by psi, and with the Monte Carlo procedure
repreated several times. Right-hand figure: Plots of the posterior median
probability of the extreme event with various choices of the smoothness of
the trend and the threshold of the distribution fit.
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A Proposal for Bivariate Extension

* Motivation: dependence is important as well as
marginal distributions
— Different variables, e.g. temperature and precipitation
— The same variable measured at different places
— Using one meteorological variable as explanatory for
another
 We give preliminary analyses of two examples

— Precipitation patterns in the south-west USA are highly
correlated with those of a region of South America
(Herweijer and Seager 2008)

— There may have been a connection between the 2010
Russian heatwave and the 2010 Pakistan floods (Lau and
Kim 2012)

— Focus here is on characterizing tail dependence
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Pakistan Rain (mm/mon)

Russian Temperatures and Pakistan Precipitation
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Figure 2. Left: Plot of JJA Russian temperature means against Pakistan JJA precipitation means,
1901-2002. Right: Same data with empirical transformation to unit Fréchet distribution. Data from
CRU, as in Figure 1. The Russian data were averaged over 45-65"N, 30-60"E, while the Pakistan
data were averaged over 32-35°N, 70-73°E, same as in Lau and Kim (2012).
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SW-USA and Uruguay/Argentina Precipitation
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Figure 1. Left: Plot of USA annual precipitation means over latitudes 25-35°N, longitudes 95-
120°W, against Argentina annual precipitation means over latitudes 30-40°S, longitudes 50-65“W,
1901-2002. Right: Same data with empirical transformation to unit Fréchet distribution. Data from
gridded monthly precipitation means archived by the Climate Research Unit of the University of East
Anglia.
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Methods

* Focus on the proportion by which the
probability of a joint exceedance is greater
than what would be true under independence.

 Method: Fit a joint bivariate model to the
exceedances above a threshold on the unit
Fréchet scale

e Two models:

» Classical logistic dependence model (Gumbel
and Mustafi 1967; Coles and Tawn 1991)

» The n-asymmetric logistic model (Ramos and
Ledford 2009)
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Ref: Alexandra Ramos and Anthony Ledford (2009), A new class of models for
bivariate joint tails, J.R. Statist. Soc. B 71, 219-241.

3.2. Smooth H,,

The model that is detailed here is based on a modified version of the asymmetric logistic depend-
ence structure of classical bivariate extremes (Tawn, 1988). Suppose that H,, has density h,, given
by

- | — w —1/a y a/n-2
mmw=’3f*%ﬂﬂ”“+( ”) } (w(1 —wy} (/@ G3.1)
ar-N P

o

for 0 <w<1 where N, = p= 14 plin — (p=1le o pl/eya/n and ne(0,1], a>0 and p>0. It is
straightforward to show that h,;, as defined above satisfies the normalizing condition (2.5) and
so, by equation (2.3), we have

_ I | i —1/5 | £ —1ja y a/n
%ﬂ&ﬂ=N:[mﬂ‘”+(;) —{mm—m+(;) } ] (3.2)

where (s. ) €[1.00) x [1.0c). The marginal survivor functions of S and T, as given by equations
(2.6), have leading terms that behave like powers of 5 or . For example, Pr(S > s) behaves like
s~ if oo < and 7Y% if o> 1 for large s. Thus the marginal tails of (S, 7) can be heavier or
of the same heaviness as the joint survivor function, depending on the relative sizes of o and 7).



Results

Logistic Model

Estimate

90% ClI

Ramos-Ledford Model

Estimate

90% CI

10-year
20-year
50-year

2.7
4.7
10.8

(1.2 . 4.2)
(1.4 , 7.8)
(2.1 , 18.8)

2.9
4.9
9.9

(1.2 . 5.0)
(1.2 ., 9.6)
(1.4, 23.4)

Table 1.

event in both variables, relative to the probability under independence,
for the USA /Uruguay-Argentina precipitation data. Shown are the point
estimate and 90% confidence interval, under both the logistic model and

the Ramos-Ledford model.

Estimates of the increase in probability of a joint extreme

Logistic Model

Ramos-Ledford Model

Estimate 90% CI Estimate 90% ClI
10-year 1.01 (1.00 1.01) 0.33 (0.04 1.4)
20-year 1.02 (1.00 1.03) 0.21 (0.008 1.8)
50-year 1.05 (1.01 1.07) 0.17 (0.001 2.9)

Table 2. Similar to Table 1, but for the Russia-Pakistan dataset.




What Next?

 We have demonstrated an empirical tail dependence for
the North and South American precipitations data, but
not for Russian temperatures and Pakistan precipitation

* To use this for future climate projections, need to show
that the same phenomenon occurs in climate model

— Likely to raise similar issues of “scale mismatch” (or
“dependence mismatch”)

— Possibility of using a hierarchical model in this case

 The advantage of the Ramos-Ledford approach is that it’s
a parametric model going beyond classical BEVT (but
there are other approaches, such as the Heffernan-Tawn
conditional approach)
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Conclusions

Extreme value theory provides a viable method for
estimating extreme event probabilities in the presence of
a trend

For combining observations with climate models, we
propose a hierarchical model that allows for systematic
discrepancies between models and observations

For each of Russia 2010, Central USA 2011 and Europe
2012 events, estimated risk ratio is at least 2.3, and it’s
likely (probability at least .66) that the risk ratio is >1.5.

We also computed future projections of extreme event
probabilities; sharp increase for Europe; much less so for
the other two regions studied

Likely future work will involve bivariate or spatial
dependence
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