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I. THE PUBLIC POLICY CONTEXT



From the Fourth Assessment Report of IPCC —

Warming of the climate system is unequivocal, as iIs nhow
evident from observations of increases in average air and
ocean temperatures, widespread melting of snow and ice,
and rising global average sea level

Most of the observed increase in global average tempera-
tures since the Mmid-20th century is very likely* due to the
observed increase in anthropogenic greenhouse gas con-
centrations

*Greater than 90% chance



ASA Activities

e ASA has an Advisory Committee on Climate Change Policy
(principal sponsor of this session)

— Rick Katz (NCAR) — current chair

e ASA members have been included in three climate science
days on Capitol Hill (thanks to Steve Pierson)

e Joint activities with other societies

— I organized a symposium on Communicating Uncertainty
in Climate Change Science at the AAAS meeting last

February (Murali Haran, Mark Berliner, Lenny Smith speak-
ers; Andy Revkin discussant)
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On the signal-to-noise problem in atmospheric response studies

By KLAUS HASSELMANN
Max-Planck-Institut fiir Meteorologie, Hamburg

SUMMARY

The problem of identifying the mean atmospheric response to external forcing in the presence of the
natural variability of the atmosphere is treated as a pattern-detection problem. It is shown that without
application of filtering techniques to reduce the number of degrees of freedom of the response pattern the
atmospheric response inferred from data or model experiments will normally fail a multi-variate significance
test. A step-wise pattern construction method is proposed which avoids these difficulties. Starting from a
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Figure 1. Relation between guessed response pattern vector g and maximal significance direction  relative
to error ellipsoid, see Eq. (27).
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Detecting Greenhouse-Gas-Induced Climate Change with an Optimal Fingerprint Method

GABRIELE C. HEGERL, * HANS VON STORCH, * KLAUS HASSELMANN, *
BENJAMIN D. SANTER, * ULRICH CUBASCH, * AND PHILIP D. JONES®

* Max-Planck-institut fiir Meteorologie, Hamburg, Germany.
" PCMDI/Lawrence Livermore National Laboratory, Livermore, California.
% Deutsches Klimarechenzentrum, Hamburg, Germany.
@ Climatic Research Unit, University of East Anglia, Norwich, United Kingdom.

(Manuscript received 26 August 1994, in final form 20 March 1996)

ABSTRACT

A strategy using statistically optimal fingerprints to detect anthropogenic climate change is outlined and
applied to near-surface temperature trends. The components of this strategy include observations, information
about natural climate variability, and a ““guess pattern’” representing the expected time—space pattern of an-
thropogenic climate change. The expected anthropogenic climate change is identified through projection of the
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Climate Dynamics (1999) 15:419-434

© Springer-Verlag 1999

M. R. Allen-S. F. B. Tett

Checking for model consistency in optimal fingerprinting

Abstract Current approaches to the detection and at-
tribution of an anthropogenic influence on climate
involve quantifying the level of agreement between
model-predicted patterns of externally forced change
and observed changes in the recent climate record.
Analyses of uncertainty rely on simulated variability
from a climate model. Any numerical representation of
the climate is likely to display too little variance on
small spatial scales, leading to a risk of spurious detec-
tion results. The risk is particularly severe if the detec-
tion strategy involves optimisation of signal-to-noise
because unrealistic aspects of model variability may
automatically be given high weight through the opti-
misation. The solution is to confine attention to aspects
of the model and of the real climate system in which the
model simulation of internal climate variability 1s ad-
equate, or, more accurately, cannot be shown to be
deficient. We propose a simple consistency check based
on standard linear regression which can be applied to

model response are correct, and neglecting the possi-
bility of non-linear feedbacks, the amplitude of the ob-
served signal suggests a climate sensitivity range of
1.2-3.4 K, although the upper end of this range may
be underestimated by up to 25% due to uncertainty in
model-predicted response patterns.

1 Introduction

A common overall approach has emerged to the detec-
tion of anthropogenic climate change. A detection stat-
istic is defined and evaluated in an observational
dataset. This might be a global mean quantity (e.g.
Stouffer et al. 1994); a model versus observation pattern
correlation (Mitchell et al. 1995a; Tett et al. 1996); the
observed trend in pattern correlation (Santer et al.
1996); or some form of “optimised fingerprint” (Hassel-
mann 1979; Hannoschock and Frankignoul 1985; Bell
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Clirmate Dyvnamics (2003) 21: 4774491
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M. R, Allen - P. A. Stott

Estimating signal amplitudes in optimal

fingerprinting, part I: theory

Focaved: 17 Aprd 2001 Accepted: 12 December 20602
2 Springer-Yerlag X3

Abstract There is increasingly clear evidence that hu-
man influence has contributed substantially to the large-
scale chmatic changes that have occwrred over the past
few decades. Attention 15 now turning to the physical
implications of the emerging anthropogenic signal. Of
particular interest is the guestion of whether current
chmate models may be over- or under-estimating the
amplitude of the climate system's response to external
forcing, including anthropogenic. Evidence of a signifi-

1 Introduction

This study describes a variant of the regression-based
technique of climate change detection and attribution
that is generally known as “optimal fingerprinting” (see,
e.g. Hasselmann 1979, 1993, 1997; Bell 1986; North et al.
1995; Leroy 1998; Allen and Tett 1999). The finger-
printing approach is to define a pattern of response to
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Statistical Principles for Climate Change Studies

RicHARD A. LEVINE

Division of Statistics, University of California, Davis, Davis, California

L. MARK BERLINER

The OQhio State University and National Institute of Statistical Sciences, Columbus, Ohio

(Manuscript recerved 10 Sepetember 1997, 1n final form 10 Apnil 1998)

ABSTRACT

Statistical principles underlying “fingerprint” methods for detecting a climate change signal above natural
climate variations and attributing the potential signal to specific anthropogenic forcings are discussed. The climate
change problem is introduced through an exposition of statistical issues in modeling the climate signal and
natural climate variability. The fingerprint approach is shown to be analogous to optimal hypothesis testing
procedures from the classical statistics literature. The statistical formulation of the fingerprint scheme suggests
new insights mnto the implementation of the techniques for climate change studies. In particular, the statistical
testing i1deas are exploited to introduce alternative procedures within the fingerprint model for attribution of
climate change and to shed light on practical 1ssues in applving the fingerprint detection strategies.
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Bayesian Climate Change Assessment

L. MARK BERLINER

The Ohio State University, Columbus, Ohio

RicHARD A. LEVINE

University of California, Davis, Davis, California

DEenNIS J. SHEA

National Center for Atmospheric Research,® Boulder, Colorade

(Manuscript recerved 20 September 1999, 1n final form 10 January 2000)

ABSTRACT

A Bayesian fingerprinting methodology for assessing anthropogenic impacts on climate was developed. This
analysis considers the effect of increased CO, on near-surface temperatures. A spatial CO, fingerprint based on
control and forced model output from the National Center for Atmospheric Research Climate System Model
was developed. The Bayesian approach 1s distinguished by several new facets. First. the prior model for the
amplitude of the fingerprint 15 a mixture of two distributions: one reflects prior uncertainty in the anticipated
value of the amplitude under the hypothesis of “no climate change.” The second reflects behavior assuming
“climate change forced by CO,.” Second, within the Bayesian framework, a new formulation of detection and
attribution analyvses based on practical significance of impacts rather than traditional statistical significance was
presented. Third. since Bayesian analyses can be very sensitive to prior mputs, a robust Bayesian approach,
which investigates the ranges of posterior inferences as prior inputs are varied. was used. Following presentation
of numerical results that enforce the claim of changes in temperature patterns due to anthropogenic CO, forcing,
the article concludes with a comparative analysis for another CO, fingerprint and selected discussion.

13



1 May 2008

Bayesian Design and Analysis for Superensemble-Based Climate Forecasting

BERLINER AND KIM

L. MARK BERLINER AND YONGKU Kim

Department of Statistics, The Ohio State University, Columbus, Ohio

{Manuscript received 4 August 2006, in final form 30 July 2007)

ABSTRACT

The authors develop statistical data models to combine ensembles from multiple climate models in a
fashion that accounts for uncertainty. This formulation enables treatment of model specific means, biases,
and covariance matrices of the ensembles. In addition, the authors model the uncertainty in using computer
model results to estimate true states of nature. Based on these models and principles of decision making in
the presence of uncertainty, this paper poses the problem of superensemble experimental design in a
quantitative fashion. Simple examples of the resulting optimal designs are presented. The authors also
provide a Bayesian climate modeling and forecasting analysis. The climate variables of interest are Northern
and Southern Hemispheric monthly averaged surface temperatures. A Bayesian hierarchical model for
these quantities is constructed, including time-varying parameters that are modeled as random variables
with distributions depending in part on atmospheric CO, levels. This allows the authors to do Bayesian
forecasting of temperatures under different Special Report on Emissions Scenarios (SRES). These forecasts
are based on Bayesian posterior distributions of the unknowns conditional on observational data for
1882-2001 and climate system model output for 2002-97. The latter dataset is a small superensemble from
the Parallel Climate Model (PCM) and the Community Climate System Model (CCSM). After summarizing
the results, the paper concludes with discussion of potential generalizations of the authors’ strategies.

1891

14



GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L05710, doi:10.1029/2005GL024831, 2006

Incorporating model uncertainty into attribution of observed

temperature change

Chris Huntingford,' Peter A. Stott,” Myles R. Allen,” and F. Hugo Lambert'

Received 13 October 2005; revised 22 December 2005; accepted 20 January 2006; published 14 March 2006.

[1] Optimal detection analyses have been used to determine
the causes of past global warming, leading to the conclusion
by the Third Assessment Report of the IPCC that “most
of the observed warming over the last 50 years is likely to
have been due to the increase in greenhouse gas
concentrations”. To date however, these analyses have
not taken full account of uncertainty mn the modelled
patterns of climate response due to differences in basic
model formulation. To address this current “perfect model™
assumption, we extend the optimal detection method to
include, simultancously, output from more than one GCM

such as methane, nitrous oxides and CFC
effect of increased atmospheric aerosols (m
and natural factors (including changes in
and stratospheric aerosols following volc:
These forcings, which we refer to hencefort
and NAT respectively, have distinct spatic
“fingerprints’’ on surface climate, which al
entiation. Optimal detection methods [Has
utilise these contrasting responses to isolate
influence of different forcings by compat
(atmosphere-ocean) General Circulation
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Identifying human influences on
atmospheric temperature

Benjamin D. Santer®’, Jeffrey F. Painter?, Carl A. Mears®, Charles Doutriaux?, Peter Caldwell?, Julie M. Arblaster®®,
Philip J. Cameron-Smith?, Nathan P. Gillett®, Peter J. Gleckler?, John Lanzante’, Judith Perlwitz?, Susan Solomon",
Peter A. Stott', Karl E. Taylor®, Laurent Terrayi, Peter W. Thorne®, Michael F. Wehner', Frank J. Wentz®,
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Center for Atmospheric Research, Boulder, CO 80307; “*Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, BC, Canada V8W
3V6: 'National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542; 9Cooperative Institute for
Research in Environmental Sciences, University of Colorado and NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, CO 80305;
PEarth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; ‘United Kingdom Meteorology Office, Hadley
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This article is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2011.

Contributed by Benjamin D. Santer, June 22, 2012
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III. OUTLINE OF STATISTICAL
APPROACH
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Basic Idea of Detection and Attribution Analysis:

where
e y. Observed signal

e r1,...,xm. Climate projections due to m forcing factors (e.g.
greenhouse gases, aerosols, solar, volcanic)

e u. noise, assumed normally distributed with mean O and co-
variance matrix C

GLS solution:
B — (XTC_lX)_lXTC_ly
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If a particular coefficient j3; is statistically significantly different
from O, we say that the jth forcing factor has been detected

Among those forcing factors that are detected, the corresponding
5;s are then interpreted as the attribution of the observational
signal to the different forcing factors

Workshop at Banff International Research Station last year, see
http://www.birs.ca/events/2012/5-day-workshops/12w5037

http://da-frontiers-birs-2012.wikispaces.com/BIRS+Workshop-+Papers
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From a recent presentation by Nathan Gillett -
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Complications

y and x1,...,xym are very high dimensional (typically thousands)

but the number of independent observations is very small. This
makes estimation of C difficult

Solutions used by climate scientists:
e Estimate C from control runs of the climate model

e Expand in empirical orthogonal functions (principal compo-
nents) and then truncate

Are there better ways of estimating a covariance matrix in high
dimensions?

21



More Complications

e The x;s are not actually known (errors in variables problem)
— climate scientists have addressed this using the total least
squares algorithm (Allen and Stott 2003) but the sampling
properties of this appear to be unknown
— Connection with math stat work on errors in variables, e.g.

Gleser, Annals of Statistics, 1982 (but Gleser's asymp-
totics won't apply in the D&A setting)

e Recently, climate scientists have started to realize that the
yS aren't actually known either — use of ensembles of ob-
servational data realizations (Peter Thorne, Carl Mears)

e [ here are additional issues about how to incorporate model
uncertainty

22



From a slide by Peter Thorne (Banff Workshop) —
100 realisations of global SST

%)
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£
(e}
<
<

Blue, HadSST2; Purple, Kaplan; Pink COBE; Orange ICOADS 2.1; Green
ERSSTv3b; Black and Grey HadSST3.
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Sources of Uncertainty for MSU Satellite

Reconstructions (Carl Mears, Banff Workshop) —

Instrument noise
Spatial/Temporal Sampling
Errors in measurement time (diurnal) adjustment

The effect of these on the merging process

— merging parameters are deduced from intersatellite
differences

— Errors in differences can lead to errors in merging
parameters

Other, unknown errors, some of which would be
difficult to detect.
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Producing Ensembles (Carl Mears, Banff Workshop) —

1. Start with a gridded monthly dataset of all zeros. Each satellite’s data is
valid only for months when that satellite was actually observing.
(144x72x408x13)

2. For each valid satellite/month, add in a random realization of the sampling
uncertainty.

3. Then add is a realization of the diurnal uncertainty.

Spie = a¢(Diur, - <Diur>) + a,(Diur, - <Diur>)+ ...

4, Perform merge using same method as we use for the real data.

5. Repeat a large number (right now 400) of times to get numerous
realizations of the expected errors.

(144x72x408x400) ~ 6.5 GB — large but manageable.
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From Santer et al. (2012) -
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Fig. 3. Zonal mean trends in observed and synthetic (A) TLS, (B) TMT, and
(C) TLT between 1979 and 2011. Observational results are from UAH, STAR,
version 3.3 of the RSS dataset, and the 11 RSS percentile realizations. Model
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IV. NEW HIERARCHICAL MODELING
APPROACH
(Joint with Dorit and Matthias)
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Statistical Model

True temperature change is unknown, but we have an ensemble

of N temperatures changes. We assume that
y(Z)|Y7WZigan(Y7W)7 i:]-a"'aNa

where W is a covariance matrix describing the variability of the
ensemble members around the true temperature change

Assume that GCM output can be written as the sum of the
(true) temperature change due to forcing plus the internal cli-
mate variability with covariance matrix C:

y |
xVx;,C % No(x;,0), 1=1,...,Lj, j=1,...,m,

where Lj iIs the number is the number of GCM runs under the
7th forcing scenario
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Statistical Model (continued)

e Internal climate variability: C = BKB’, where B contains

the first r principal components estimated from control runs
(EOFs), K = diag{e,...,eM}, and r << n

e Observation uncertainty: W = 02\7\7(7), where W is a corre-

lation matrix based on a Gaussian Markov random field (i.e.,
W1 is sparse).

e Priors:
— Noninformative priors for 3 and o
— Vaguely informative priors for the \;

— Discrete uniform prior on {~1,...,vn,} for v

29



Bayesian Fitting Procedure

Gibbs sampler with adaptive Metropolis-Hastings updates

High-dimensional problem — Integrate out y and X:

vy =XB+9(B)Bn+eD, i=1,...,N
where X has jth column ZlLi (l)/LJ, 9(B) = A1+27L [3]2/Lj)1/2,
n ~ Ny(0,K), and €® %4 N,.(0, W)

After precomputing certain quantities for all possible values of
v E {71,...,%7}, the number of computations required to eval-
uate the likelihood in the MCMC algorithm does not depend on
n or N anymore
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Proposed Application

Observational and Model temperature data:

e Climate Model Intercomparison project (CMIP5) models: suite
of 19 models

e Remote Sensing Systems temperature retrievals based on mi-
crowave sounding units (MSUs): 400 realizations

e Temperature at different layers of the atmosphere
— lower stratosphere (TLS)
— mid— to upper troposphere sphere (TMT)
— lower troposphere (TLT)

= Same setup as was used by Santer et al.(2012).
31



V. CONCLUSIONS
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The field of detection and attribution is important for public
policy about uncertainty in climate change projections

Well established statistical methodology largely developed by
climate scientists

But, there are opportunities for more sophisticated statistical
analyses — this presentation has outlined some possibilities

There is a whole other set of techniques based on paleocli-
matology (Bo Li, later in this session)

Many possibilities for the future!
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