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STATEMENT OF PROBLEM

During the past decade, there has been extensive research by
climatologists documenting increases in the levels of extreme
precipitation, both in observational and model-generated data.
Groisman et al. (Journal of Climate, 2005) have a comprehensive
review of this whole field.

With a few exceptions (papers by Katz, Zwiers and co-authors)
this literature have not made use of the extreme value distribu-
tions and related constructs

There are however a few papers by statisticians that have ex-
plored the possibility of using more advanced extreme value
methods (e.g. Cooley, Naveau and Nychka, JASA 2007; Sang
and Gelfand, Env. Ecol. Stat. 2008)

In this paper, we explore systematically the development of ex-
treme value and spatial models for this problem
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CURRENT METHODOLOGY
(see e.g. Groisman et al. 2005)

Most common method is based on counting exceedances over a
high threshold (e.g. 99.7% threshold)

• Express exceedance counts as anomalies from 30-year mean
at each station

• Average over regions using “geometric weighting rule”: first
average within 1o grid boxes, then average grid boxes within
region

• Calculate standard error of this procedure using exponen-
tial spatial covariances with nugget (range of 30–500 km,
nugget-sill ratio of 0–0.7).

• Increasing trends found in many parts of the world, nearly
always stronger than trends in precipitation means, but spa-
tially and temporally heterogeneous. Strongest increase in
US extreme precipitations is post-1970, about 7% overall
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DATA SOURCES

• NCDC Rain Gauge Data (Groisman 2000)

– Daily precipitation from 5873 stations

– Select 1970–1999 as period of study

– 90% data coverage provision — 4939 stations meet that

• NCAR-CCSM climate model runs

– 20 × 41 grid cells of side 1.4o

– 1970–1999 and 2070–2099 (A2 scenario)

• PRISM data

– 1405 × 621 grid, side 4km

– Elevations

– Mean annual precipitation 1970–1997
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EXTREME VALUE DISTRIBUTIONS

Suppose X1, X2, ..., are independent random variables with the
same probability distribution, and let Mn = max(X1, ..., Xn). Un-
der certain circumstances, it can be shown that there exist nor-
malizing constants an > 0, bn such that

Pr
{
Mn − bn
an

≤ x
}

= F (anx+ bn)n → H(x).

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(x) = exp(−e−x), all x (Gumbel)

H(x) =
{0 x < 0

exp(−x−α) x > 0
(Fréchet)

H(x) =
{

exp(−|x|α) x < 0

1 x > 0
(Weibull)

In Fréchet and Weibull, α > 0.
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The three types may be combined into a single generalized ex-

treme value (GEV) distribution:

H(x) = exp

−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

 ,
(y+ = max(y,0))

where µ is a location parameter, ψ > 0 is a scale parameter

and ξ is a shape parameter. ξ → 0 corresponds to the Gumbel

distribution, ξ > 0 to the Fréchet distribution with α = 1/ξ, ξ < 0

to the Weibull distribution with α = −1/ξ.

ξ > 0: “long-tailed” case, 1− F (x) ∝ x−1/ξ,

ξ = 0: “exponential tail”

ξ < 0: “short-tailed” case, finite endpoint at µ− ξ/ψ
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EXCEEDANCES OVER
THRESHOLDS

Consider the distribution of X conditionally on exceeding some

high threshold u:

Fu(y) =
F (u+ y)− F (u)

1− F (u)
.

As u→ ωF = sup{x : F (x) < 1}, often find a limit

Fu(y) ≈ G(y;σu, ξ)

where G is generalized Pareto distribution (GPD)

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.
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The Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

ξ > 0: long-tailed (equivalent to usual Pareto distribution), tail

like x−1/ξ,

ξ = 0: take limit as ξ → 0 to get

G(y;σ,0) = 1− exp
(
−
y

σ

)
,

i.e. exponential distribution with mean σ,

ξ < 0: finite upper endpoint at −σ/ξ.
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The Poisson-GPD model combines the GPD for the excesses

over the threshold with a Poisson distribtion for the number of

exceedances. Usually the mean of the Poisson distribution is

taken to be λ per unit time.
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POINT PROCESS APPROACH

Homogeneous case:

Exceedance y > u at time t has probability

1

ψ

(
1 + ξ

y − µ
ψ

)−1/ξ−1

+
exp

−
(

1 + ξ
u− µ
ψ

)−1/ξ

+

 dydt
• µ, ψ, ξ are GEV parameters for annual maxima

• N-year return value — the level yN that is exceeded in any

one year with probability 1
N .
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Illustration of point process model.
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Inhomogeneous case:

• Time-dependent threshold ut and parameters µt, ψt, ξt

• Exceedance y > ut at time t has probability

1

ψt

(
1 + ξt

y − µt
ψt

)−1/ξt−1

+
exp

−
(

1 + ξt
ut − µt
ψt

)−1/ξt

+

 dydt
• Estimation by maximum likelihood
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Seasonal models without trends

General structure:

µt = θ1,1 +
K1∑
k=1

(
θ1,2k cos

2πkt

365.25
+ θ1,2k+1 sin

2πkt

365.25

)
,

logψt = θ2,1 +
K2∑
k=1

(
θ2,2k cos

2πkt

365.25
+ θ2,2k+1 sin

2πkt

365.25

)
,

ξt = θ3,1 +
K3∑
k=1

(
θ3,2k cos

2πkt

365.25
+ θ3,2k+1 sin

2πkt

365.25

)
.

Call this the (K1,K2,K3) model.

Note: This is all for one station. The θ parameters will differ at
each station.
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Model selection

Use a sequence of likelihood ratio tests

• For each (K1,K2,K3), construct LRT against some (K′1,K
′
2,K

′
3),

K′1 ≥ K1,K
′
2 ≥ K2,K

′
3 ≥ K3 (not all equal) using standard χ2

distribution theory

• Look at proportion of rejected tests over all stations. If too

high, set Kj = K′j (j = 1,2,3) and repeat procedure

• By trial and error, we select K1 = 4,K2 = 2,K3 = 1 (17

model parameters for each station)
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Models with trend

Add to the above:

• Overall linear trend θj,2K+2t added to any of µt (j = 1),
logψt (j = 1), ξt (j = 1). Define K∗j to be 1 if this term is
included, o.w. 0.

• Interaction terms of form

t cos
2πkt

365.25
, t sin

2πkt

365.25
, k = 1, ...,K∗∗j .

Typical model denoted

(K1,K2,K3)× (K∗1,K
∗
2,K

∗
3)× (K∗∗1 ,K∗∗2 ,K∗∗3 )

Eventually use (4,2,1)×(1,1,0)×(2,2,0) model (27 parameters
for each station)
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Details

• Selection of time-varying threshold — based on the 95th

percentile of a 7-day window around the date of interest

• Declustering by r-runs method (Smith and Weissman 1994)

— use r = 1 for main model runs

• Computation via sampling the likelihood: evaluate contribu-

tions to likelihood for all observations above threshold, but

sample only 5% or 10% of those below, then renormalize to

provide accurate approximation to full likelihood
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Details (continued)

• Covariances of parameters at different sites:

θ̂s is MLE at site s, solves ∇`s(θ̂s) = 0

For two sites s, s′,

Cov
(
θ̂s, θ̂s′

)
≈
(
∇2`s(θ̂s)

)−1
Cov (∇`s(θs),∇`s′(θs′))

(
∇2`s′(θ̂s′)

)−1

Estimate covariances on RHS empirically, using a subset of

days (same subset for all stations)

Also employed when s = s′.

Open question: Should we “regularize” this covariance ma-

trix?
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Details (continued)

• Calculating the N-year return value

For one year (t = 1, ..., T ), find yθ,N numerically to solve

T∑
1

(
1 + ξt

yθ,N − µt
ψt

)−1/ξt
= − log

(
1−

1

N

)
.

– Also calculate
∂yθ,N
∂θj

by numerical implementation of in-
verse function formula

– Covariances between return level estimates at different
sites by

Cov
{
yθ̂s,N , yθ̂s′,N

}
≈

(
dyθ̂s,N

dθs

)T
Cov

(
θ̂s, θ̂s′

)dyθ̂s′,N
dθs′

 .
– Also apply to ratios of return level estimates, such as

25− year return level at s in 1999

25− year return level at s in 1970
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SPATIAL SMOOTHING

Let Zs be field of interest, indexed by s (typically the logarithm
of the 25-year RV at site s, or a log of ratio of RVs. Taking logs
improves fit of spatial model, to follow.)

Don’t observe Zs — estimate Ẑs. Assume

Ẑ | Z ∼ N [Z,W ]

Z ∼ N [Xβ, V (φ)]

Ẑ ∼ N [Xβ, V (φ) +W ].

for known W ; X are covariates, β are unknown regression pa-
rameters and φ are parameters of spatial covariance matrix V .

• φ by REML

• β given φ by GLS

• Predict Z at observed and unobserved sites by kriging
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Details

• Covariates

– Always include intercept

– Linear and quadratic terms in elevation and log of mean

annual precipitation

– Contrast “climate space” approach of Cooley et al. (2007)
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Details (continued)

• Spatial covariances

– Matérn

– Exponential with nugget

– Intrinsically stationary model

Var(Zs − Zs′) = φ1d
φ2
s,s′ + φ3

– Matérn with nugget

The last-named contains all the previous three as limiting

cases and appears to be the best overall, though is often

slow to converge (e.g. sometime the range parameter tends

to∞, which is almost equivalent to the intrinsically stationary

model)
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Details (continued)

• Spatial heterogeneity

Divide US into 19 overlapping regions, most 10o × 10o

– Kriging within each region

– Linear smoothing across region boundaries

– Same for MSPEs

– Also calculate regional averages, including MSPE
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Continental USA divided into 19 regions
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Trends across 19 regions (measured as change in log RV25) for 8 differ-
ent seasonal models and one non-seasonal model with simple linear trends.
Regional averaged trends by geometric weighted average approach.
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Summary of models shown on previous slide:

1: Preferred covariates model (r = 0 for declustering, uses 95%

threshold calculated from 7-day window)

2–4: Three variants where we add covariates to µt and/or logψt

5: Replace r = 0 by r = 1 (subsequent results are based on this

model)

6: Replace r = 0 by r = 2

7: 97% threshold calculated from 14-day window

8: 98% threshold calculated from 28-day window
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Map of 25-year return values (cm.) for the years 1970–1999
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Root mean square prediction errors for map of 25-year return

values for 1970–1999
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Ratios of return values in 1999 to those in 1970
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Root mean square prediction errors for map of ratios of 25-year

return values in 1999 to those in 1970
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∆1 S1 ∆2 S2 ∆1 S1 ∆2 S2
A –0.01 .03 0.05∗∗ .05 K 0.08∗∗∗ .01 0.09∗∗ .03
B 0.07∗∗ .03 0.08∗∗∗ .04 L 0.07∗∗∗ .02 0.07∗ .04
C 0.11∗∗∗ .01 0.10 .03 M 0.07∗∗∗ .02 0.10∗∗ .03
D 0.05∗∗∗ .01 0.06 .05 N 0.02 .03 0.01 .03
E 0.13∗∗∗ .02 0.14∗ .05 O 0.01 .02 0.02 .03
F 0.00 .02 0.05∗ .04 P 0.07∗∗∗ .01 0.11∗∗∗ .03
G –0.01 .02 0.01 .03 Q 0.07∗∗∗ .01 0.11∗∗∗ .03
H 0.08∗∗∗ .01 0.10∗∗∗ .03 R 0.15∗∗∗ .02 0.13∗∗∗ .03
I 0.07∗∗∗ .01 0.12∗∗∗ .03 S 0.14∗∗∗ .02 0.12∗ .06
J 0.05∗∗∗ .01 0.08∗∗ .03

∆1: Mean change in log 25-year return value (1970 to 1999) by

kriging

S1: Corresponding standard error (or RMSPE)

∆2, S2: same but using geometrically weighted average (GWA)

Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.
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Return value map for CCSM data (cm.): 1970–1999
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Return value map for CCSM data (cm.): 2070–2099
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Estimated ratios of 25-year return values for 2070–2099 to those

of 1970–1999, based on CCSM data, A2 scenario
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RMSPE for map in previous slide
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Extreme value model with trend: ratio of 25-year return value in

1999 to 25-year return value in 1970, based on CCSM data
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RMSPE for map in previous slide
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∆3 S3 ∆4 S4 ∆3 S3 ∆4 S4
A 0.16∗∗ .07 0.24∗∗ .10 K –0.08∗∗∗ .02 –0.11∗ .05
B 0.14∗∗∗ .04 0.12∗∗∗ .06 L –0.04 .04 –0.03 .06
C 0.02 .05 –0.14 .11 M 0.01 .03 0.00 .08
D –0.06 .04 –0.15 .10 N 0.06∗∗ .02 0.05 .06
E –0.07∗ .03 –0.09 .08 O –0.03 .04 –0.06 .07
F –0.07∗ .04 –0.03 .05 P –0.01 .04 –0.07 .07
G 0.03 .03 0.08∗ .04 Q –0.04 .04 –0.03 .07
H 0.11∗∗∗ .03 0.08 .06 R –0.17∗∗∗ .03 –0.06 .08
I –0.02 .04 –0.05 .07 S 0.00 .04 0.02 .05
J –0.15∗∗∗ .03 –0.16∗∗ .06

∆3: Mean change in log 25-year return value (1970 to 1999) for

CCSM, by kriging

SE3: Corresponding standard error (or RMSPE)

∆4, SE4: Results using GWA

Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.
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RETURN VALUE MAPS FOR INDIVIDUAL DECADES
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Map of 25-year return values (cm.) for the years 1950–1959
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Map of 25-year return values (cm.) for the years 1960–1969
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Map of 25-year return values (cm.) for the years 1970–1979
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Map of 25-year return values (cm.) for the years 1980–1989
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Map of 25-year return values (cm.) for the years 1990–1999
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Estimated ratios of 25-year return values for 1990s compared

with average at each location over 1950–1989
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Regional changes in log RV25 for each decade compared with

1950s
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CONCLUSIONS

1. Focus on N-year return values — strong historical tradition
for this measure of extremes (we took N = 25 here)

2. Seasonal variation of extreme value parameters is a critical
feature of this analysis

3. Overall significant increase over 1970–1999 except for parts
of western states — average increase across continental US
is 7%

4. Kriging better than GWA

5. But... based on CCSM data there is a completely different
spatial pattern and no overall increase

6. Projections to 2070–2099 show further strong increases but
note caveat based on point 5

7. Decadal variations since 1950s show strongest increases dur-
ing 1990s.
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