# INFLUENCE OF CLIMATE CHANGE ON EXTREME WEATHER EVENTS Richard L Smith University of North Carolina and SAMSI (Joint with Michael Wehner, Lawrence Berkeley Lab)



#### **Extreme Weather Events are of Increasing Concern**



European temperatures in early August 2003, relative to 2001-2004 average

From NASA's **MODIS - Moderate Resolution Imaging** Spectrometer, courtesy of Reto Stöckli, ETHZ





Land Surface Temperature Anomaly (°C) 0

Russian Heatwave 2010



#### Superstorm Sandy 2012 2

## How Should We Characterize the Influence of Anthropogenic Climate Change on Probabilities of Extreme Events?

- Focus of discussion is *how probabilities of extreme events are changing*
- Stott, Stone and Allen (2004) defined *fraction of attributable risk* (FAR) as a measure of human influence on extreme events
- Estimate the probabilities  $P_0$ ,  $P_1$  of the extreme event of interest under natural forcings and anthropogenic forcings respectively (derived from climate models). Then FAR=1- $P_0/P_1$ .
- Example: for the Europe 2003 event they estimated the probability under anthropogenic conditions to be 1 in 250 (P<sub>1</sub>), but the probability under natural conditions to be 1 in 1000 (P<sub>0</sub>).
- Based on this they stated the FAR was 1-250/1000=0.75.
- According to them, it was "very likely" (confidence level at least 90%) that the FAR was at least 0.5.
- I prefer to use risk ratio,  $RR=P_1/P_0$ , or its logarithm.

# An Alternative Viewpoint - The NRC Report on "Climate and Social Stress"

- Focus on increased probability of extreme event probabilities over the next ten years – not directly concerned with attribution problem
- The committee did not find published literature that would lead to numerical answers
- But there is widespread agreement that extreme event probabilities are increasing
- Their conclusion: *Expect surprises*

# **Current Literature**

- Initial approach given by Stott *et al*. (2004) used extreme value theory
- Various methods based on normal distributions (Beniston and Diaz 2004, Schär *et al*. 2004, Jaeger *et al*. 2008)
- Nonparametric method (Hoerling *et al.* 2007)
- Recently Hansen *et al.* (2012) empirically examined a very large number of observational time series but did not consider climate models, so no attribution or forward projections
- Not everyone agrees extreme events represent climate change – Dole *et al.* (2011) argued Russia 2010 heatwave was the result of a natural blocking event, and Hoerling *et al.* (2013) make a similar argument for the Texas heatwave of 2011

#### Hansen, Saito and Ruedy (2012)



# The Method of Pall et al. (Nature, 2011)

- Pall et al. proposed a simpler method based on counting of extreme events in a large ensemble of "several thousand model runs" (climateprediction.net)
- The method seems effective if you have a large ensemble and the probabilities are not too small
- However, power calculations show that the method could become extremely data intensive if the estimated probabilities are truly small

#### **Power Calculation:**

Sample size required to distinguish two event probabilities in a test of size 0.05 at power 0.8.

| Null        | Ratio of Probabilities |       |       |       |     |
|-------------|------------------------|-------|-------|-------|-----|
| Probability | 2                      | 4     | 6     | 8     | 10  |
| 0.05        | 422                    | 71    | 31    | 18    | 11  |
| 0.025       | 880                    | 144   | 67    | 41    | 28  |
| 0.01        | 2,239                  | 384   | 170   | 104   | 73  |
| 0.001       | about 23,000           | 3,863 | 1,728 | 1,057 | 743 |

Highlighted cases correspond to two versions of the analysis by Pall *et al.*, and the probability values given in Stott, Stone and Allen (2004)

Conclusion: the method could become *extremely* data intensive

## Data

- Observational data from CRU (Climate Research Unit, University of East Anglia, UK) – monthly averages on 5°x5° grid boxes, aggregated to JJA average anomalies over
  - Europe: spatial averages over 10°W-40°E, 30°N-50°N (2003 value was 1.92K but 2012 almost the same)
  - Russia: spatial averages over 30°E-60°E, 45°N-65°N (2010 value 3.65K)
  - Central USA (including Texas and Oklahoma): spatial averages over 90°W-105°W, 25°N-45°N (2011 value 2.01K)
- Climate model data from CMIP3
  - 14 climate models
  - Total of 64 control runs, 44 twentieth century runs, 34 future projections under A2 scenario
  - Same spatial regions as observational data, converted to anomalies

## **Europe Summer Mean Temperatures**



## **Russia Summer Mean Temperatures**



## **Central USA Summer Mean Temperatures**



## **Introduction To Extreme Value Theory**

Key tool: *Generalized Extreme Value* Distribution (GEV)

- Three-parameter distribution, derived as the general form of limiting distribution for extreme values (Fisher-Tippett 1928, Gnedenko 1943)
- $\mu$ ,  $\sigma$ ,  $\xi$  known as location, scale and shape parameters
- $\xi > 0$  represents long-tailed distribution,  $\xi < 0$  short-tailed

$$\Pr\{Y \le y\} = \exp\left[-\left\{1+\xi\left(\frac{y-\mu}{\sigma}\right)\right\}_{+}^{-1/\xi}\right].$$

- Peaks over threshold approach implies that the GEV can be used generally to study the tail of a distribution: assume GEV holds exactly above a threshold u and that values below u are treated as left-censored
- Time trends by allowing  $\mu$ ,  $\sigma$ ,  $\xi$  to depend on time
- Example: Allow  $\mu_t = \beta_0 + \sum_{k=1}^K \beta_k x_{kt}$  where  $\{x_{kt}, k = 1, ..., K, t = 1, ..., T\}$  are spline basis functions for the approximation of a smooth trend from time 1 to T with K degrees of freedom
- Critical questions:
  - Determination of threshold and K
  - Point and interval estimates for the probability of exceeding a high value, such as 1.92K in the case of the Europe time series

## **Europe Summer Mean Temperatures**



### **Europe Summer Mean Temperatures With Trend**



## **Russia Summer Mean Temperatures**



### **Russia Summer Mean Temperatures With Trend**



## **Central USA Summer Mean Temperatures**



#### **Central USA Summer Mean Temperatures With Trend**



# **Bayesian Calculations**

- Focus on posterior distribution of binary log of threshold exceedance probability (BLOTEP)
- Use models both with and without trends
- Use 80th (solid curve), 75th (dashed) and 85<sup>th</sup> (dot-dashed) percentiles for thresholds



## What's Next?

- Obvious strategy at this point is to rerun the GEV calculation on the model data
- But this runs into the *scale mismatch problem*: data plots shows that the models and observations are on different scales, so we should expect the extreme value parameters to be different as well
- Requires a more subtle approach *hierarchical modeling*



Model NCAR, Run 1, Europe







# **Proposed Hierarchical Model**



# **Bayesian Statistics Details**

#### Model Specification

- $(M_1, D_1) \sim WN_q(A, m, M^*, F)$ , Wishart-Normal prior with density  $\propto |D_1|^{(m-q)/2} \exp\left[-\frac{1}{2} \operatorname{tr}\left\{D_1 \left(A + F(M_1 M^*)(M_1 M^*)^T\right)\right\}\right].$
- Given  $M_1, D_1, \theta^{(1,0)}, ..., \theta^{(1,N)}$  are IID  $\sim N_q(M_1, D_1^{-1})$ .
- Given  $\theta^{(1,j)}$ ,  $Y^{(1,j)}$  generated by GEV with parameters  $\theta^{(1,j)}$  ( $Y^{(obs)}$  for j = 0, if  $\Xi = 1$ )
- Similar structure for  $M_0, D_0$  etc.
- We can expand this model by defining  $\theta^{(1,0)} \sim N_q(M_1, (\psi D_1)^{-1})$  where  $\psi$  represents departure from exchangeability ( $\psi = 1$  is exchangeable). However,  $\psi$  is not identifiable we can only try different values as a sensitivity check.

#### Computation

- $(M_1, D_1) \mid \theta^{(1,1)}, ..., \theta^{(1,N)} \sim WN_q(\tilde{A}, \tilde{m}, \tilde{M}^*, \tilde{F})$ , where  $\tilde{m} = m + N, \tilde{F} = F + N, \tilde{M}^* = \left(FM^* + \sum_{j=1}^N \theta^{(1,j)}\right) / \tilde{F}, \tilde{A} = A + FM^*M^{*T} + \sum_{j=1}^N \theta^{(j)}\theta^{(j)T} \tilde{F}\tilde{M}^*\tilde{M}^{*T}$ .
- Metropolis update for  $\theta^{(1,1)}, ..., \theta^{(1,N)}$  given  $M_1, D_1$  and Y's
- Metropolis update for  $\theta^{(1,0)}$  based on conditional density

$$\exp\left\{-\frac{\psi}{2}\left(\theta^{(1,0)}-M_{1}\right)^{T}D_{1}\left(\theta^{(1,0)}-M_{1}\right)\right\}\cdot L\left(\theta^{(1,0)};\mathbf{Y}^{(\text{obs})}\right)$$

where L is likelihood for  $\theta^{(1,0)}$  given data  $\mathbf{Y}^{(\text{obs})}$  and  $\Xi = 1$ 

• Similar updates for  $\Xi = 0$  side of picture; up to 1,000,000 iterations

### **Europe Summer Mean Temperatures With Trend**



## **Europe Summer Mean Temperatures With Trend and Central 50% of Hierarchical Model Distribution**



### **Russia Summer Mean Temperatures With Trend**



### **Russia Summer Mean Temperatures With Trend and Central 50% of Hierarchical Model Distribution**



#### **Central USA Summer Mean Temperatures With Trend**



26

#### Central USA Summer Mean Temperatures With Trend and Central 50% of Hierarchical Model Distribution



# **Posterior Densities for the BLORRAT**

(numbers are for solid curves and equal weights; dashed curves allow for different weights between climate models and observations)





BLORRAT

10

BLORRAT

#### Changes in Projected Extreme Event Probabilities Over Time



## **Sensitivity Plots**



Sensitivity plots for Europe. Left-hand figure: Plots of the posterior median probability of the extreme event for various weightings between models and observations, represented by psi, and with the Monte Carlo procedure repreated several times. Right-hand figure: Plots of the posterior median probability of the extreme event with various choices of the smoothness of the trend and the threshold of the distribution fit.

# What Next?

- We plan to repeat the analyses using newer datasets and other meteorological variables (especially precipitation, maximum windspeed in hurricanes)
- High-impact events that depend on more than one meteorological variable, e.g.
  - Texas 2011: high temperatures and a drought in the same year.
    One extreme event caused by a combination of two meteorological variables
  - The Russian heatwave and the Pakistani floods of 2011 may have been related: two different events but possible statistical dependence
- Spatial analysis the actual scale of interest may be different from the one at which data were originally compiled – need for downscaling
- Account for multiple comparisons

# **Conclusions**

- Extreme value theory provides a viable method for estimating extreme event probabilities in the presence of a trend
- For combining observations with climate models, we propose a hierarchical model that allows for systematic discrepancies between models and observations
- For each of Russia 2010, Central USA 2011 and Europe 2012 events, estimated risk ratio is at least 2.3, and it's *likely* (probability at least .66) that the risk ratio is >1.5.
- We also computed future projections of extreme event probabilities; sharp increase for Europe; much less so for the other two regions studied
- Paper to be submitted shortly; data and programs will be available