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Negative daily returns of Pfizer, GE and Citibank

(thanks to Zhengjun Zhang)
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These figures show negative daily returns from closing prices

of 1982-2001 stock prices in three companies, Pfizer, GE and

Citibank. Typical questions here are

1. How to determine Value at Risk, i.e. the amount which might

be lost in a portfolio of assets over a specified time period with

a specified small probability,

2. Dependence among the extremes of different series, and ap-

plication to the portfolio management problem,

3. Modeling extremes in the presence of volatility.
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INSURANCE EXTREMES
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From Smith and Goodman (2000) —

The data consist of all insurance claims experienced by a large
international oil company over a threshold 0.5 during a 15-year
period — a total of 393 claims. Seven types:

Type Description Number Mean
1 Fire 175 11.1
2 Liability 17 12.2
3 Offshore 40 9.4
4 Cargo 30 3.9
5 Hull 85 2.6
6 Onshore 44 2.7
7 Aviation 2 1.6

Total of all 393 claims: 2989.6

10 largest claims: 776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2,
45.2, 40.4, 30.7.
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Some plots of the insurance data.
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Some problems:

1. What is the distribution of very large claims?

2. Is there any evidence of a change of the distribution over

time?

3. What is the influence of the different types of claim?

4. How should one characterize the risk to the company? More

precisely, what probability distribution can one put on the amount

of money that the company will have to pay out in settlement

of large insurance claims over a future time period of, say, three

years?
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WEATHER EXTREMES
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(From a presentation by Myles Allen)
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OUTLINE OF TALK

I. Extreme value theory

• Probability Models

• Estimation

• Diagnostics

II. Examples

III. Insurance Extremes

IV. Trends in Extreme Rainfall Events
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I. EXTREME VALUE THEORY
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EXTREME VALUE DISTRIBUTIONS

Suppose X1, X2, ..., are independent random variables with the
same probability distribution, and let Mn = max(X1, ..., Xn). Un-
der certain circumstances, it can be shown that there exist nor-
malizing constants an > 0, bn such that

Pr
{
Mn − bn
an

≤ x
}

= F (anx+ bn)n → H(x).

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(x) = exp(−e−x), all x (Gumbel)

H(x) =
{0 x < 0

exp(−x−α) x > 0
(Fréchet)

H(x) =
{

exp(−|x|α) x < 0

1 x > 0
(Weibull)

In Fréchet and Weibull, α > 0.
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The three types may be combined into a single generalized ex-

treme value (GEV) distribution:

H(x) = exp

−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

 ,
(y+ = max(y,0))

where µ is a location parameter, ψ > 0 is a scale parameter

and ξ is a shape parameter. ξ → 0 corresponds to the Gumbel

distribution, ξ > 0 to the Fréchet distribution with α = 1/ξ, ξ < 0

to the Weibull distribution with α = −1/ξ.

ξ > 0: “long-tailed” case, 1− F (x) ∝ x−1/ξ,

ξ = 0: “exponential tail”

ξ < 0: “short-tailed” case, finite endpoint at µ− ξ/ψ
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EXCEEDANCES OVER
THRESHOLDS

Consider the distribution of X conditionally on exceeding some

high threshold u:

Fu(y) =
F (u+ y)− F (u)

1− F (u)
.

As u→ ωF = sup{x : F (x) < 1}, often find a limit

Fu(y) ≈ G(y;σu, ξ)

where G is generalized Pareto distribution (GPD)

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.
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The Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

ξ > 0: long-tailed (equivalent to usual Pareto distribution), tail

like x−1/ξ,

ξ = 0: take limit as ξ → 0 to get

G(y;σ,0) = 1− exp
(
−
y

σ

)
,

i.e. exponential distribution with mean σ,

ξ < 0: finite upper endpoint at −σ/ξ.
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The Poisson-GPD model combines the GPD for the excesses

over the threshold with a Poisson distribtion for the number of

exceedances. Usually the mean of the Poisson distribution is

taken to be λ per unit time.
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OTHER MODELS FOR EXTREMES

1. r-largest Order Statistics Model: Instead of just considering

the maximum value in each year, look at the r largest (from

independent events), for some fixed small number r. Then

we can also write down an asymptotic expression for the joint

distribution of these r largest events. The case r = 1 reduces

to classical extreme value theory.

2. There is also an alternative viewpoint known as the point pro-

cess approach, which is a threshold approach like the GPD,

but leads to a direct fitting of the GEV distribution for annual

maxima. This can be very useful when we are interesting in

the interrelations among the different approaches.
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Illustration of point process model.
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An extension of this approach allows for nonstationary processes

in which the parameters µ, ψ and ξ are all allowed to be time-

dependent, denoted µt, ψt and ξt.

This is the basis of the extreme value regression approaches

introduced later
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ESTIMATION

GEV log likelihood:

` = −N logψ −
(

1

ξ
+ 1

)∑
i

log

(
1 + ξ

Yi − µ
ψ

)
−
∑
i

(
1 + ξ

Yi − µ
ψ

)−1/ξ

provided 1 + ξ(Yi − µ)/ψ > 0 for each i.

Poisson-GPD model:

` = N logλ− λT −N logσ −
(

1 +
1

ξ

) N∑
i=1

log
(

1 + ξ
Yi
σ

)
provided 1 + ξYi/σ > 0 for all i.

The method of maximum likelihood states that we choose the

parameters (µ, ψ, ξ) or (λ, σ, ξ) to maximize `. These can be

calculated numerically on the computer.
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II. EXAMPLES
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Plots of exceedances of River Nidd, (a) against day within year,

(b) against total days from January 1, 1934. Adapted from

Davison and Smith (1990).
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DIAGNOSTICS

Gumbel plots

QQ plots of residuals

Mean excess plot
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Gumbel plots

Used as a diagnostic for Gumbel distribution with annual maxima

data. Order data as Y1:N ≤ ... ≤ YN :N , then plot Yi:N against

reduced value xi:N ,

xi:N = − log(− log pi:N),

pi:N being the i’th plotting position, usually taken to be (i−1
2)/N .

A straight line is ideal. Curvature may indicate Fréchet or Weibull

form. Also look for outliers.
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Gumbel plots. (a) Annual maxima for River Nidd flow series. (b)

Annual maximum temperatures in Ivigtut, Iceland.
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QQ plots of residuals

A second type of probability plot is drawn after fitting the model.

Suppose Y1, ..., YN are IID observations whose common distribu-

tion function is G(y; θ) depending on parameter vector θ. Sup-

pose θ has been estimated by θ̂, and let G−1(p; θ) denote the

inverse distribution function of G, written as a function of θ. A

QQ (quantile-quantile) plot consists of first ordering the obser-

vations Y1:N ≤ ... ≤ YN :N , and then plotting Yi:N against the

reduced value

xi:N = G−1(pi:N ; θ̂),

where pi:N may be taken as (i− 1
2)/N . If the model is a good fit,

the plot should be roughly a straight line of unit slope through

the origin.

Examples...

29



GEV model to Ivigtut data, (a) without adjustment, (b) exclud-

ing largest value from model fit but including it in the plot.
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QQ plots for GPD, Nidd data. (a) u = 70. (b) u = 100.
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Mean excess plot

Idea: for a sequence of values of w, plot the mean excess over

w against w itself. If the GPD is a good fit, the plot should be

approximately a straight line.

In practice, the actual plot is very jagged and therefore its “straight-

ness” is difficult to assess. However, a Monte Carlo technique,

assuming the GPD is valid throughout the range of the plot, can

be used to assess this.

Examples...
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Mean excess over threshold plots for Nidd data, with Monte Carlo

confidence bands, relative to threshold 70 (a) and 100 (b).
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PROFILES LIKELIHOODS FOR
QUANTILES

Suppose we are interested in the N-year return level yN , i.e. the

(1− 1/N)-quantile of the annual maximum distribution. We can

express yN as a function of the extreme value parameters µ, ψ

and ξ, and thereby obtain an estimate for any N .

However, that raises the question of what is the uncertainty of

this estimate. A very general approach to this is via something

called the profile likelihood, which calculates the likelihood of yN
after maximizing with respect to the other parameters.

Example from the Nidd data:
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Profile log-likelihoods for extreme quantiles based on Nidd data
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BAYESIAN APPROACHES

An alternative approach to extreme value inference is Bayesian,

using vague priors for the GEV parameters and MCMC samples

for the computations. Bayesian methods are particularly useful

for predictive inference, e.g. if Z is some as yet unobserved ran-

dom variable whose distribution depends on µ, ψ and ξ, estimate

Pr{Z > z} by ∫
Pr{Z > z;µ, ψ, ξ}π(µ, ψ, ξ|Y )dµdψdξ

where π(...|Y ) denotes the posterior density given past data Y
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Plots of women’s 3000 meter records, and profile log-likelihood

for ultimate best value based on pre-1993 data.
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Example. The left figure shows the five best running times by

different athletes in the women’s 3000 metre track event for

each year from 1972 to 1992. Also shown on the plot is Wang

Junxia’s world record from 1993. Many questions were raised

about possible illegal drug use.

We approach this by asking how implausible Wang’s performance

was, given all data up to 1992.

Robinson and Tawn (1995) used the r largest order statistics

method (with r = 5, translated to smallest order statistics) to

estimate an extreme value distribution, and hence computed a

profile likelihood for xult, the lower endpoint of the distribution,

based on data up to 1992 (right plot of previous figure)
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Alternative Bayesian calculation:

(Smith 1997)

Compute the (Bayesian) predictive probability that the 1993 per-

formance is equal or better to Wang’s, given the data up to 1992,

and conditional on the event that there is a new world record.

The answer is approximately 0.0006.
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III. INSURANCE EXTREMES

41



From Smith and Goodman (2000) —

The data consist of all insurance claims experienced by a large
international oil company over a threshold 0.5 during a 15-year
period — a total of 393 claims. Seven types:

Type Description Number Mean
1 Fire 175 11.1
2 Liability 17 12.2
3 Offshore 40 9.4
4 Cargo 30 3.9
5 Hull 85 2.6
6 Onshore 44 2.7
7 Aviation 2 1.6

Total of all 393 claims: 2989.6

10 largest claims: 776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2,
45.2, 40.4, 30.7.
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GPD fits to various thresholds:

u Nu Mean σ ξ
Excess

0.5 393 7.11 1.02 1.01
2.5 132 17.89 3.47 0.91
5 73 28.9 6.26 0.89

10 42 44.05 10.51 0.84
15 31 53.60 5.68 1.44
20 17 91.21 19.92 1.10
25 13 113.7 74.46 0.93
50 6 37.97 150.8 0.29
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Point process approach:

u Nu µ logψ ξ
0.5 393 26.5 3.30 1.00

(4.4) (0.24) (0.09)
2.5 132 26.3 3.22 0.91

(5.2) (0.31) (0.16)
5 73 26.8 3.25 0.89

(5.5) (0.31) (0.21)
10 42 27.2 3.22 0.84

(5.7) (0.32) (0.25)
15 31 22.3 2.79 1.44

(3.9) (0.46) (0.45)
20 17 22.7 3.13 1.10

(5.7) (0.56) (0.53)
25 13 20.5 3.39 0.93

(8.6) (0.66) (0.56)

Standard errors are in parentheses
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Predictive Distributions of Future Losses

What is the probability distribution of future losses over a specific

time period, say 1 year?

Let Y be future total loss. Distribution function G(y;µ, ψ, ξ) —

in practice this must itself be simulated.
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Traditional frequentist approach:

Ĝ(y) = G(y; µ̂, ψ̂, ξ̂)

where µ̂, ψ̂, ξ̂ are MLEs.

Bayesian:

G̃(y) =
∫
G(y;µ, ψ, ξ)dπ(µ, ψ, ξ | X)

where π(· | X) denotes posterior density given data X.
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Estimated posterior densities for the three parameters, and for
the predictive distribution function. Four independent Monte
Carlo runs are shown for each plot.
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Hierarchical models for claim type and year effects

How can we use the fact that there are six different types of
claim? One possibility is a hierarchical model, in which we as-
sume each of the six types has separate extreme value parameters
µj, ψj, ξj, but that these have second-stage normal distributions,

µj ∼ N [mµ, s
2
µ], j = 1, ...,6,

logψj ∼ N [mψ, s
2
ψ], j = 1, ...,6,

ξj ∼ N [mξ, s
2
ξ ], j = 1, ...,6.

This can be fitred by hierarchical Bayesian methods.

In an extension of the same idea, we also assume that each year
has a yearly parameter δk which is also drawn from a normal
distribution.

We show boxplots for each of µj, logψj, ξj, j = 1, ...,6 and for
δk, k = 2,15.
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Posterior means and quartiles for µj, logψj, ξj (j = 1, ...,6) and

for δk (k = 2, ...,15).
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Computations of posterior predictive distribution functions (plot-
ted on a log-log scale) corresponding to the homogenous model
(curve A) and three different versions of the hierarchical model.
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The final plot shows the advntage of the hierarchical approach.

We actually get less extreme predictions under the hierarchical

model (curves B or C) than we do ignoring the hierarchical struc-

ture (curve A).
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IV. TREND IN PRECIPITATION
EXTREMES

(joint work with Amy Grady and Gabi Hegerl)

During the past decade, there has been extensive research by
climatologists documenting increases in the levels of extreme
precipitation, but in observational and model-generated data.

With a few exceptions (papers by Katz, Zwiers and co-authors)
this literature have not made use of the extreme value distribu-
tions and related constructs

There are however a few papers by statisticians that have ex-
plored the possibility of using more advanced extreme value
methods (e.g. Cooley, Naveau and Nychka, to appear JASA;
Sang and Gelfand, submitted)

This discussion uses extreme value methodology to look for
trends
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DATA SOURCES

• NCDC Rain Gauge Data (Groisman 2000)

– Daily precipitation from 5873 stations

– Select 1970–1999 as period of study

– 90% data coverage provision — 4939 stations meet that

• NCAR-CCSM climate model runs

– 20 × 41 grid cells of side 1.4o

– 1970–1999 and 2070–2099 (A2 scenario)

• PRISM data

– 1405 × 621 grid, side 4km

– Elevations

– Mean annual precipitation 1970–1997
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EXTREME VALUES METHODOLOGY

Based on “point process” extreme values methodology (cf. Smith

1989, Coles 2001, Smith 2003)
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Inhomogeneous case:

• Time-dependent threshold ut and parameters µt, ψt, ξt

• Exceedance y > ut at time t has probability

1

ψt

(
1 + ξt

y − µt
ψt

)−1/ξt−1

+
exp

−
(

1 + ξt
ut − µt
ψt

)−1/ξt

+

 dydt
• Estimation by maximum likelihood
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Seasonal models without trends

General structure:

µt = θ1,1 +
K1∑
k=1

(
θ1,2k cos

2πkt

365.25
+ θ1,2k+1 sin

2πkt

365.25

)
,

logψt = θ2,1 +
K2∑
k=1

(
θ2,2k cos

2πkt

365.25
+ θ2,2k+1 sin

2πkt

365.25

)
,

ξt = θ3,1 +
K3∑
k=1

(
θ3,2k cos

2πkt

365.25
+ θ3,2k+1 sin

2πkt

365.25

)
.

Call this the (K1,K2,K3) model.

Note: This is all for one station. The θ parameters will differ at
each station.
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Models with trend

Add to the above:

• Overall linear trend θj,2K+2t added to any of µt (j = 1),
logψt (j = 1), ξt (j = 1). Define K∗j to be 1 if this term is
included, o.w. 0.

• Interaction terms of form

t cos
2πkt

365.25
, t sin

2πkt

365.25
, k = 1, ...,K∗∗j .

Typical model denoted

(K1,K2,K3)× (K∗1,K
∗
2,K

∗
3)× (K∗∗1 ,K∗∗2 ,K∗∗3 )

Eventually use (4,2,1)×(1,1,0)×(2,2,0) model (27 parameters
for each station)
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SPATIAL SMOOTHING

Let Zs be field of interest, indexed by s (typically the logarithm
of the 25-year RV at site s, or a log of ratio of RVs. Taking logs
improves fit of spatial model, to follow.)

Don’t observe Zs — estimate Ẑs. Assume

Ẑ | Z ∼ N [Z,W ]

Z ∼ N [Xβ, V (φ)]

Ẑ ∼ N [Xβ, V (φ) +W ].

for known W ; X are covariates, β are unknown regression pa-
rameters and φ are parameters of spatial covariance matrix V .

• φ by REML

• β given φ by GLS

• Predict Z at observed and unobserved sites by kriging
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Spatial Heterogeneity

• Divide US into 19 overlapping regions, most 10o × 10o

– Kriging within each region

– Linear smoothing across region boundaries

– Same for MSPEs

– Also calculate regional averages, including MSPE
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Continental USA divided into 19 regions
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Trends across 19 regions (measured as change in log RV25) for 8 differ-
ent seasonal models and one non-seasonal model with simple linear trends.
Regional averaged trends by geometric weighted average approach.
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Map of 25-year return values (cm.) for the years 1970–1999

62



Root mean square prediction errors for map of 25-year return

values for 1970–1999
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Ratios of return values in 1999 to those in 1970
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∆1 S1 ∆2 S2 ∆1 S1 ∆2 S2
A –0.01 .03 0.05∗∗ .05 K 0.08∗∗∗ .01 0.09∗∗ .03
B 0.07∗∗ .03 0.08∗∗∗ .04 L 0.07∗∗∗ .02 0.07∗ .04
C 0.11∗∗∗ .01 0.10 .03 M 0.07∗∗∗ .02 0.10∗∗ .03
D 0.05∗∗∗ .01 0.06 .05 N 0.02 .03 0.01 .03
E 0.13∗∗∗ .02 0.14∗ .05 O 0.01 .02 0.02 .03
F 0.00 .02 0.05∗ .04 P 0.07∗∗∗ .01 0.11∗∗∗ .03
G –0.01 .02 0.01 .03 Q 0.07∗∗∗ .01 0.11∗∗∗ .03
H 0.08∗∗∗ .01 0.10∗∗∗ .03 R 0.15∗∗∗ .02 0.13∗∗∗ .03
I 0.07∗∗∗ .01 0.12∗∗∗ .03 S 0.14∗∗∗ .02 0.12∗ .06
J 0.05∗∗∗ .01 0.08∗∗ .03

∆1: Mean change in log 25-year return value (1970 to 1999) by

kriging

S1: Corresponding standard error (or RMSPE)

∆2, S2: same but using geometrically weighted average (GWA)

Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.
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Return value map for CCSM data (cm.): 1970–1999
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Return value map for CCSM data (cm.): 2070–2099
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Estimated ratios of 25-year return values for 2070–2099 to those

of 1970–1999, based on CCSM data, A2 scenario
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Extreme value model with trend: ratio of 25-year return value in

1999 to 25-year return value in 1970, based on CCSM data
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CONCLUSIONS

1. Focus on N-year return values — strong historical tradition

for this measure of extremes (we took N = 25 here)

2. Seasonal variation of extreme value parameters is a critical

feature of this analysis

3. Overall significant increase over 1970–1999 except for parts

of western states — average increase across continental US

is 7%

4. Projections to 2070–2099 show further strong increases but

note caveat based on point 5

5. But... based on CCSM data there is a completely different

spatial pattern and no overall increase — still leaves some

doubt as to overall interpretation.
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FURTHER READING

Finkenstadt, B. and Rootzén, H. (editors) (2003), Extreme Val-

ues in Finance, Telecommunications and the Environment. Chap-

man and Hall/CRC Press, London.

(See http://www.stat.unc.edu/postscript/rs/semstatrls.pdf)

Coles, S.G. (2001), An Introduction to Statistical Modeling of

Extreme Values. Springer Verlag, New York.
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THANK YOU FOR YOUR
ATTENTION!
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