THE VARIATION OF MARATHON PERFORMANCES WITH AGE AND SEX **Richard L Smith** University of North Carolina and SAMSI with input from: Scott Powers (Stanford) Jessi Cisewski (Carnegie Mellon) Jack Fleming and Michael Pieroni (BAA) ETIC ASS

BOSTON MARATHON

Duke

NCSU

UNC

NISS

COLLEGE OF ARTS & SCIENCES **PART I:** Our work on qualifying times for the Boston Marathon (Smith, Powers, Cisewski, *Chance*, to appear)

PART II: A new "longitudinal" approach to age-related performances (work in progress)

BACKGROUND

- The Boston Marathon is the only major marathon to require qualifying standards of (almost) all participants
- The need to revise the standards became apparent after entries for the 2011 race closed out in one day
- My interest in this arose out of extensive press discussion, including the idea that women's standards should be tightened relative to the men's
- I sent the BAA a proposal to do some statistical analysis
- Much to my surprise, they accepted ...

Age	1	Ven	Women		
18-34	3hrs	10min	3hrs	40min	
35-39	3hrs	15min	3hrs	45min	
40-44	3hrs	20min	3hrs	50min	
45-49	3hrs	30min	4hrs	00min	
50-54	3hrs	35min	4hrs	05min	
55-59	3hrs	45min	4hrs	15min	
60-64	4hrs	00min	4hrs	30min	
65-69	4hrs	15min	4hrs	45min	
70-74	4hrs	30min	5hrs	00min	
75-79	4hrs	45min	5hrs	15min	
80 and over	5hrs	00min	5hrs	30min	

Table 1: Boston Marathon Qualifying Times (up to 2012)

Our Work with the BAA

- Objective: try to determine the total number of eligible runners under existing standard and under various proposed modifications
- Total of 641 "feeder" races from which at least one person qualified for the 2010 Boston Marathon
- Eliminated 362 as being small races, or out of US/Canada, or out of qualification window
- Left 279 races from which we would estimate qualifiers
- Complete counts from 37 "top feeder" races that sent most qualifiers to the Boston Marathon
- Complete counts from 5 other large races
- Randomly sampled 25 races out of remaining 237, scaled up numbers to estimate total qualifiers in those 237 races

Table 2: Estimated totals by age group of	of all male and femal	le marathon runners	in all races,
and numbers of qualifie	ers under 2011 quali	ifying standards.	

Age	Total Runners		Boston (Qualifiers	
Group	м	M F		F	
18-34	126780	126861	12004	12782	
35-39	67271	48298	6630	5787	
40-44	70890	45339	8305	6594	
45-49	60644	34101	10994	6783	
50-54	45712	22033	7541	3420	
55-59	27609	10453	4378	1533	
60-64	15799	4686	3204	649	
65-69	6270	1584	1167	192	
70-74	2488	397	560	52	
75-79	601	113	84	9	
80-99	148	28	21	6	
All ages	424210	293893	54888	37809	
Total		718106		92695	

-														
Age	Q	Τ1	QT1	2	QT1	L - 5	QT1	- 10	QT1	- 15	QT:	1 - 20	QT1	. – 30
Group	М	F	м	F	Μ	F	м	F	М	F	Μ	F	М	F
18-34	9.5	10.1	8.2	8.9	6.7	7.0	5.3	5.1	3.6	3.5	2.7	2.5	1.4	1.2
35-39	9.9	12.0	8.4	10.6	6.8	8.4	4.8	6.0	3.6	4.3	2.2	3.0	0.9	1.5
40-44	11.7	14.5	10.0	13.0	8.2	10.7	5.9	7.7	4.3	5.4	3.1	3.8	1.0	1.7
45-49	18.1	19.9	15.6	17.9	12.6	14.9	9.3	11.6	6.8	8.2	5.0	6.1	2.4	3.0
50-54	16.5	15.5	14.6	14.1	11.9	12.1	8.4	8.7	5.9	6.3	3.9	4.3	1.7	1.8
55-59	15.9	14.7	14.1	13.3	11.8	11.3	8.6	9.0	6.0	6.3	4.1	4.2	1.7	2.2
60-64	20.3	13.8	18.1	12.4	15.3	11.2	11.5	9.0	8.8	7.5	6.7	5.9	3.5	3.7
65-69	18.6	12.1	17.0	11.7	14.6	9.8	12.1	8.5	10.0	6.7	7.9	5.9	4.5	3.4
70-74	22.5	13.1	20.8	12.6	17.4	12.1	13.6	9.8	11.5	7.6	8.8	6.8	5.2	5.0
75-79	14.0	8.0	13.6	8.0	12.8	7.1	11.5	6.2	9.8	4.4	8.3	3.5	6.2	2.7
80-99	14.2	21.4	13.5	21.4	12.2	21.4	12.2	21.4	11.5	21.4	8.1	21.4	7.4	21.4

Table 3: Percentage of qualifiers for all races with QT adjustments

Conclusions from this exercise

- In 18-34 age group, current standards very slightly favor women, but this would be reversed with as little as a 2-minute adjustment to women's qualifying times
- Qualifying percentages are higher in older age groups, where there are far fewer competitors (*is this fair?* – question for second part of talk)
- In my opinion, women over 60 do get a raw deal

 there are far fewer of them than men in the
 same age groups, but the qualifying percentages
 are substantially smaller than men's

Decision by the BAA

- Reduced all qualifying times by 5 minutes but also eliminated 59-second cushion
- Introduced 4-tier entry system which accepted runners in order of margin under the qualifying time for their age/sex group
- 2012: Old qualifying times still in effect, accepted all runners 1 m. 14 s. or better under their qualifying time
- 2013: New qualifying times in effect, accepted all qualified runners
- 2014: Expanded field included non-finishers from 2013; accepted all runners 1 m. 38 s. or better under their qualifying time (mine was 1 m. 54 s. under QT)

How well did our projections hold up?

Figure 1: Numbers of estimated and actual qualifiers by time increment

Time Below 2011 Qualifying Standard

Age	Expected		Obs	erved
	Men	Women	Men	Women
18-34	-0.093	-0.551	-0.183	-0.193
35-39	-0.305	-0.113	-0.487	0.528
40-44	-0.310	0.087	-0.725	-0.596
45-49	-0.318	0.392	-0.868	-0.286
50-54	0.040	0.324	-0.032	0.357
55-59	0.110	0.156	0.588	0.444
60-64	0.168	0.110	0.380	0.249
65-69	0.146	0.036	0.495	0.120
70-74	0.057	0.021	0.076	0.011
75-79	0.031	0.003	0.075	0.002
80 and over	0.006	0.003	0.034	0.011

Table 9: Changes in Expected and Observed Percentages from Old to New Qualifying Times for Each Age-Sex Category

Correlation 0.527

Is This Correlation Statistically Significant?

Is This Correlation Statistically Significant? Run a bootstrap ...

Is This Correlation Statistically Significant? Run a bootstrap ...

Figure 2: Histogram of Bootstrapped Correlation Coefficients: Central 95% in Red

• About 500 runners have run the Boston marathon at least 10 years in succession (BAA)

- About 500 runners have run the Boston marathon at least 10 years in succession (BAA)
- No easy way to reconstruct the list

- About 500 runners have run the Boston marathon at least 10 years in succession (BAA)
- No easy way to reconstruct the list
- I used the datasets I had available to find 1,272 runners who had run each of 2010, 2011, 2013

- About 500 runners have run the Boston marathon at least 10 years in succession (BAA)
- No easy way to reconstruct the list
- I used the datasets I had available to find 1,272 runners who had run each of 2010, 2011, 2013
- I then used the BAA archive to find all of those runners who had run at least 6 times (men) or 5 times (women) during 2001-2013

- About 500 runners have run the Boston marathon at least 10 years in succession (BAA)
- No easy way to reconstruct the list
- I used the datasets I had available to find 1,272 runners who had run each of 2010, 2011, 2013
- I then used the BAA archive to find all of those runners who had run at least 6 times (men) or 5 times (women) during 2001-2013
- Runners who did not finish in 2013 were estimated using Hammerling et al. (2014)

- About 500 runners have run the Boston marathon at least 10 years in succession (BAA)
- No easy way to reconstruct the list
- I used the datasets I had available to find 1,272 runners who had run each of 2010, 2011, 2013
- I then used the BAA archive to find all of those runners who had run at least 6 times (men) or 5 times (women) during 2001-2013
- Runners who did not finish in 2013 were estimated using Hammerling et al. (2014)
- Result: 547 men and 249 women identified (806 runners; 7,219 individual race results)

The Idea

- Each individual runner record is a part-trace of the performance v. age curve for that runner
- Allow for a random "runner effect"
- Also allow for a random "calendar year" effect (2004 and 2012 were very hot)
- Separate men's and women's performance
- A refinement (later): also distinguish runners of different ability levels

Statistical Model:

$$\log t_{ij} = \alpha_i + \beta_{y_{ij}} + S(a_{ij}; K) + \epsilon_{ij}, \qquad (1)$$

where

- t_{ij} is the *j*th finish time of runner *i*,
- y_{ij} is the year of the *j*th finish time of runner *i*,
- a_{ij} is the *i*th runner's age in her *j*th finish time,
- α_i represents the overall ability level of runner i (small α_i means a faster runner),
- $\beta_{y_{ij}}$ is a year effect,
- S(a_{ij}; K) represents a nonlinear function of age with K degrees of freedom,
- ϵ_{ij} is a random error.
 - In practice replace $S(a_{ij}; K)$ with $S(a_{ij}; K) S(30; K)$.
 - Use R package lme4 to fit.

Reconstruction of Age-Performance Curve: All Runners

Reconstruction of Age-Performance Curve: All Runners

Reconstruction of Age-Performance Curve: All Runners

In practice, we compute separate curves for men and women and also compare with the age-performance curves that are implicit in the current Boston Marathon qualifying times, and in agegraded performances

Age-graded performances: a method of comparing performances for different age/sex categories by relating them to current world or national records

Age-performance curve for men. Solid black curve is splinebased estimate of age effect relative to age 30; dotted black curves are pointwise 95% confidence bounds. Blue step function based on Boston marathon qualifying times; green curve based on age-graded performances. Both the blue step function and the green curve are normalized so that their minimum is the same as that for the estimated spline curve.

Same as previous page, but for women's performances.

We can also directly compare men with women, and different subsets of each

Also look at the year effect

Year

We can also consider the implications of these results for Boston Marathon qualifying times (Warning: These results are quite sensitive to which curve is used and how it is processed)

Age		Wome	en	Men			
Group	Now	Proposed	Age-Graded	Now	Proposed	Age-Graded	
35–39	3:40	3:39	3:41	3:10	3:05	3:05	
40–44	3:45	3:44	3:52	3:15	3:08	3:12	
45–49	3:55	3:49	4:06	3:25	3:13	3:20	
50-54	4:00	3:58	4:22	3:30	3:22	3:29	
55–59	4:10	4:10	4:41	3:40	3:35	3:39	
60-64	4:25	4:22	5:22	3:55	3:53	3:50	
65–69	4:40	4:34	5:28	4:10	4:15	4:02	
70–74	4:55	4:50	5:57	4:25	4:43	4:16	
75–79	5:10	5:14	6:37	4:40	5:15	4:37	

• The problem is difficult

- The problem is difficult
- Current Boston Marathon standards have evolved over the years, but no real "science" behind them

- The problem is difficult
- Current Boston Marathon standards have evolved over the years, but no real "science" behind them
- Age-graded standards are popular in the running community, but they have problems

- The problem is difficult
- Current Boston Marathon standards have evolved over the years, but no real "science" behind them
- Age-graded standards are popular in the running community, but they have problems
- The longitudinal method proposed here is the only method based on how individual runners' performances change with age

- The problem is difficult
- Current Boston Marathon standards have evolved over the years, but no real "science" behind them
- Age-graded standards are popular in the running community, but they have problems
- The longitudinal method proposed here is the only method based on how individual runners' performances change with age
- Still need larger datasets and more development of the method

- The problem is difficult
- Current Boston Marathon standards have evolved over the years, but no real "science" behind them
- Age-graded standards are popular in the running community, but they have problems
- The longitudinal method proposed here is the only method based on how individual runners' performances change with age
- Still need larger datasets and more development of the method
- Thank you for your attention!