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From the 2014 IPCC Report (Summary for
Policymakers):

“It is extremely likely∗ that more than half of the observed in-

crease in global average surface temperature from 1951 to 2010

was caused by anthropogenic increase in greenhouse gas concen-

trations and other anthropogenic forcings together.”

What does this mean? How does IPCC evaluate statements of

this nature?

∗probability greater than 95%
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Introduction to Detection and Attribution (1)

Detection and Attribution refers to a class of statistical tech-
niques that are used to break down a climate signal (tempera-
tures, precipitation, wind speeds, etc.) into a series of compo-
nents due to various forcing factors.

Typical forcing factors that are considered include greenhouse
gases, other anthropogenic components (including aerosols, which
tend to have a cooling effect), variations in solar output and vol-
canic eruptions. The last two are considered natural forcings.

A forcing factor is said to be detected if there is a statistically
significant contribution based on that factor in the observational
signal.

Among the factors that are detected, the attributions of those
factors are numerical coefficients that represent the contributions
of the individual factors to the overall signal.
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Introduction to Detection and Attribution (2)

Detection and Attribution is largely a statistical technique devel-

oped by atmospheric scientists, but during the present decade

has attracted more attention from statisticians.

Its origins are usually attributed to a paper by Hasselmann (1979)

but the concept was reformulated and greatly extended during

the 1990s and 2000s.

During the present decade, there have been a number of at-

tempts to extend the statistical foundations of the method.

This presentation reviews some of the history and background

of this methodology, leading up to a recent paper by Katzfuss,

Hammerling and Smith (Geophysical Research Letters, 2017).
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Hasselmann’s First Approach (1979)

• Overall change (e.g. in temperature field) represented by
n-dimensional vector Φ̄.

• Estimated change from data: Φ

• Assume Φ− Φ̄ ∼ N (0,C)

• C estimated from data but treated as known

• Test H0 : Φ̄ = 0 =⇒ χ2 test
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Hasselmann’s First Approach (continued)

• Suppose Φ̄ = BΨ̄ where B is a n× p matrix of known basis

functions (interpreted as a p-dimensional “signal”)

• A revised estimate Φ̃ is chosen to minimize |Φ̃−Φ|2. This in

turn is used to construct a revised χ2 text statistic.

• A key part of the method is expansion in principal compo-

nents (EOFs). Hasselmann anticipated that it might in prac-

tice be necessary to restrict to a small number of leading

EOFs (he suggested between 5 and 20).
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Extensions

• The initial paper of Hasselmann was followed by a number of

extensions and ramafications in the 1990s, e.g. Hasselmann

(1993), Journal of Climate, Hasselmann (1997), Climate Dy-

namics, Hegerl and North (1997), Journal of Climate, North

and Stevens (1998), Journal of Climate.

• It was designed to be highly multidimensional

• However it was also implicit that a reduction in dimension (via

leading EOFs) was needed to make the method applicable

in practice
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The method comes to maturity: Two papers in
1996

1
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Santer et al. (1996)
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Hegerl et al. (1996)
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Alternative Formulation

• Levine and Berliner (J. Clim 12, 564–574, 1999)

• Levine, Berliner and Shea (J. Clim 13, 3805–3820, 2000)
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Optimal Signal Detection

This is based on Levine’s and Berliner’s (J. Clim 12, 564–574,
1999) reinterpretation of Hasselman’s papers in J. Clim 6, 1957–
1971 (1993) and Climate Dynamics 13, 601–611 (1997).

Suppose the observed climate signal Ψ satisfies

Ψ = ΨS + Ψ̃

interpreted as “signal+noise”. In practice, we usually assume
both Ψ and ΨS are in fact anomalies from some reference time
period. We also assume

• ΨS =
∑p
i=1 aigi where g1, ..., gp are p known signal patterns

and a1, ..., ap are unknown weights; also write ΨS = Ga.

• Ψ̃ is a vector of “errors” with mean 0 and covariance matrix
C.
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Optimal Fingerprints (Hasselmann)

• di = fTi Ψ is “detector” (and fi is “fingerprint”)

• dS = (dS1 , ..., d
S
p ) = (fT1 Ψ, ..., fTp Ψ)

• Fingerprints fi constructed to maximize signal to noise ratio

ρ2(dS) = (dS)TD−1dS,

(i, j) entry of D is Cov(d̃i, d̃j) = Cov(fTi Ψ̃, fTj Ψ̃) = fTi Cfj.

• This optimization problem leads to f∗i = C−1gi, and hence

d∗ = GTC−1Ψ.

• Statistical significance of the signal determined through ρ2(d∗).

15



Alternative Formulation (Levine & Berliner)

• Regression equation

Ψ = Ga + Ψ̃

• GLS estimates â = (GTC−1G)−1GTC−1Ψ and hence Ψ̂
S

=

Gâ.

• Under Gaussian assumptions, â ∼ N [a, (GTC−1G)−1].

• Test H0 : a = 0 against Ha : a 6= 0: UMPI test of level α

rejects H0 if

T = ΨTC−1G(GTC−1G)−1GTC−1Ψ > χ2
p(1− α).

• But T = ΨT f∗(GTC−1G)−1(f∗)TΨ = ρ2(d∗). Therefore, the

two tests are equivalent.
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Other Issues

• Estimation of C

• They also considered the attribution question — estimates

of a, vector of coefficients of specified basis functions corre-

sponding to known climate signals

• Null and alternative hypotheses the wrong way round? Anal-

ogy with bioequivalence problems

• Test is usually performed only if initial “detection” test re-

jects a = 0. But that makes it harded to asses true signifi-

cance level.
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Bayesian Climate Change Assessment

Levine, Berliner and Shea (J. Clim 13, 3805–3820, 2000)

Idea: Present and alternative Bayesian viewpoint of detection

and attribution procedures
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The approach of Myles Allen and collaborators

• Allen and Tett, “Checking for model consistency in optimal

fingerprinting”, Climate Dynamics, 1999

• Allen and Stott, “Estimating signal amplitudes on optimal

fingerprinting, Part I: theory” Climate Dynamics, 2003

• Allen, Stott and Jones, “Estimating signal amplitudes on op-

timal fingerprinting, Part II: application to general circulation

models” Climate Dynamics, 2003

• Huntingford et al., “Incorporating model uncertainty into at-

tribution of observed temperature change”, Geophysical Re-

search Letters, 2006
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Allen and Tett (1999), Page 1

y = Xβ + u

where

• y is vector of observations (`× 1)

• X is matrix of m response patterns (`×m)

• u is “climate noise”, covariance matrix C

• Assume normalizing matrix P such that PCPT = I, C−1 =
PTP.

Then

Py = PXβ + Pu

where noise Pu has covariance matrix I.
20



Allen and Tett (1999), Page 2

Then the Gauss-Markov Theorem implies

β̃ = (XTPTPX)−1XTPTPy

with covariance matrix

V (β̃) = (XTC−1X)−1.

Confidence ellipsoid:

(β̃ − β)T (XTC−1X)−1(β̃ − β) ∼ χ2
m.

Main difficulty: C is unknown.

We could have a have a vector of n independent “noise” simula-

tions yN and then estimate Ĉ = 1
nYNY

T
N but typically n << ` so

Ĉ is singular.
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Allen and Tett (1999), Page 3

Resolution:

• Restrict to κ EOFs with largest variance (equivalent to re-

placing P by Pκ, consisting of the κ eigenvectors of C with

largest eigenvalues).

• Independent control runs used to estimate C

Have an estimate Ṽ (β̃) with ν degrees of freedom (also needs

to be estimated because of autocorrelation in series of control

runs). Then:

(β̃ − β)T Ṽ (β̃)−1(β̃ − β) ∼ mFm,ν
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Allen and Tett (1999), Page 4

Final theoretical step: testing the fit

Define

ũ = y −Xβ̃.

Then

r2 = ũTC−1ũ ∼ χ2
κ−m.

With independent control runs

ũT Ĉ−1ũ ∼ (κ−m)Fκ−m,ν.

This can be used as a diagnostic on the model fit and also to

guide the choice of κ.
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Total Least Squares

Basic equation still

Y =
m∑
j=1

βjXj + η

where Y is the observational record (e.g. a vector of trend in
temperature means), X1, ..., Xm are the signals from m climate
models, and η is an error term.

Instead of ordinary least squares, Allen and Stott (2003) pro-
posed to fit (1) by total least squares, which allows for errors
in the Xj’s as well as Y . Technique extended by Huntingford,
Stott, Allen and Lambert (2006).

The motivation is that, in practice, the X’s are also unknown.

We reformulate this based on a classical (non-Bayesian) treat-
ment of the errors in variables problem (Gleser 1981).
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Single x variable (Allen & Stott)

1
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Multiple x Variables

Allen and Stott considered the multiple regression extension of
this — key assumption is the same noise structure in each co-
variate and in the control model runs

y =
m∑
i=1

(xi − νi)βi + ν0

where each νi has the same noise structure as ν0.

Motivation for this assumption: we don’t actually know the noise
structure of either ν0 or νi, i ≥ 1, but the only tool we have to
estimate either is the set of control runs, so we assume the same
covariances for control runs as for model simulations that include
forcing factors.

To paraphrase Allen and Stott, a method that even crudely ac-
counts for the variances of the X variables is surely better than
one that ignored these issues altogether.
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Gleser’s formulation of errors in variables (EIV)

Ref: L.J. Gleser, Annals of Statistics, 1981

xi =

(
xi1
xi2

)
=

(
ui1
ui2

)
+

(
ei1
ei2

)
, (1)

xi1 and xi2 observations of dimensions p and r respectively, ui1
and ui2 are true unobserved signals, ei1 and ei2 noise with co-

variances σ2Ip and σ2Ir. Also

ui2 = Bui1. (2)

MLE: choose B and ui1, ..., uin to minimize

Q =
1

2σ2

∑
i

(xi1 − ui1)T (xi1 − ui1) +
1

2σ2

∑
i

(xi2 −Bui1)T (xi2 −Bui1).

(3)
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Computing the MLE

Choose B to minimize

Q̃ =
1

2σ2

∑
i

(xi2 −Bxi1)T (Ir +BBT )−1(xi2 −Bxi1). (4)

(also called generalized least squares by Gleser)
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Asymptotic Distribution Theory (Gleser)

Assume estimator B̂n based on n observations, U1 the p×n matrix
whose columns are ui1, ..., uin.

[Assumption A:] ei are i.i.d. random vectors with mean 0 and
common covariance matrix σ2Ip+r

[Assumption C:] ∆ = limn→∞ n−1U1U
T
1 exists, positive definite.

[Assumption E:] The cross-moments of the common distribu-
tion of the ei are identical, up to and including moments
of order 4, to the corresponding moments of the multivari-
ate normal distribution with the same mean and covariance
matrix.

Then the elements of the n1/2(B̂ − B) have an asymptotic rp-
dimensional normal distribution with mean 0 and the covariance
between the (i, j) and (i′, j′) elements is given by σ2[σ2∆−1(Ip+
BTB)−1∆−1 + ∆−1]jj′ · [Ir +BBT ]ii′.
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Application to Allen-Stott Model

Identify xi2 with Y (single observation, dimension r)

Identify xi1 with (X1, ..., Xm)T (dimension rm). Also

B =
(
β1Ir β2Ir . . . βmIr

)
. (5)

GLSE chooses β1, ..., βm to minimize

S =
(Y −

∑
j βjXj)

T (Y −
∑
j βjXj)

1 +
∑
β2
j

. (6)

Equivalent to Allen and Stott (2003). In principle, we could use

Gleser’s theory to approximate the asymptotic (co-)variances of

the estimators, though this is problematic because n = 1...

30



Huntingford, Stott, Allen and Lambert(2006)

Previously

y =
m∑
i=1

(xi − νi)βi + ν0 (7)

Now assume each signal is derived as a mean x̄i over several

models and rewrite (7) as

y =
m∑
i=1

(x̄i − νi − µi)βi + ν0 (8)

where µi is intended to capture the uncertainty of model projec-

tions for signal i.

Assume different noise structure for µi as for νi, uses Bayesian

EIV method from Nounou et al., AIChE J. (2002) (“Bayesian

latent variable regression”)
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More Recent Developments

• A. Ribes, J.-M. Azäıs and S. Planton (2009), Adaptation of
the optimal fingerprint method for climate change detection
using a well-conditioned covaroance matrix estimate. Cli-
mate Dynamics

• A. Ribes, S. Planton and L. Terray (2013), Application of
regularised optimal fingerprinting to attribution. Part I: Method,
properties and idealised analysis. Climate Dynamics

• A. Hannart, A. Ribes and P. Naveau (2014), Optimal finger-
printing under multiple sources of uncertainty. Geophysical
Research Letters

• A. Hannart (2016), Integrated optimal fingerprinting: Method
description and illustration. Journal of Climate

• M. Katzfuss, D. Hammerling and R. Smith (2017), A Bayesian
hierarchical model for climate change detection and attribu-
tion. Geophysical Research Letters

32



The Model of Katzfuss–Hammerling–Smith (1)

Consider the basic structure

y | x1, ...,xM ,β,C, α ∼ Nn


M∑

m=1

βjxj,C

 . (9)

where

• y is the vector of “true” temperatures (n× 1);

• xm for 1 ≤ m ≤M is the “signal” for the m’th forcing factor;

• β is the vector of regression coefficients (M × 1);

• C is the covariance matrix representing internal variability;
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The Model of Katzfuss–Hammerling–Smith (2)

The observational error equation is

y(i) | y,W ∼ Nn(y,W), i = 1, ..., N, (10)

for N independent reconstructions of y with assumed covariance

matrix W = diag(ω1, ..., ωn).

The model error equation is

x(`)
m | xm,C ∼ Nn(xm,C), ` = 1, ..., Lm, m = 0, ...,M. (11)
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Most of the remaining slides are taken from a presentation pre-

pared by Dorit Hammerling (National Center for Atmospheric

Research), based on the paper by Katzfuss, Hammerling and

Smith (2017, Geophysical Research Letters)
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Relation to Method of Hannart
(J. Climate 2016)

Hannart presented an “integrated Optimal Fingerprinting” ap-
proach that has several overlaps with the current method

• Not expicitly Bayesian but uses several elements derived from
Bayesian theory, in particular, integrated likelihoods

• Initial Ĉ = S where S is sample covariance matrix from con-
trol model runs

• Improved estimate Ĉα = α∆ + (1 − α)S for suitably chosen
α, ∆

• Inverse Wishart “prior distribution” on C; integrate out C

from Likelihood

• Didn’t take account of observational uncertainty

• Open question which method performs better
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For another viewpoint on this whole subject, I recommend the

video by Aurélien Ribes from BIRS

https://www.birs.ca/events/2016/5-day-workshops/16w5092/videos
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D Kr.    erry    manuelE
Professor of Atmospheric Science

MIT

PRESENTED BY:

SAMSI Public Lecture

The Storm Next Time:                 
Hurricanes and Climate Change
Monday, October 9, 2017 @ 7:30pm                 

Genome Sciences Building, G100 Auditorium       

University of North Carolina - Chapel Hill

The recent tragedy of Hurricane Harvey, together with earlier extreme 

events such as Hurricanes Katrina and Sandy, has raised the question 

whether the apparent increasing severity of such events can be attributed 

to the human influence on greenhouse gas warming. Dr. Emanuel will 

review the growing consensus that the incidence of the strongest storms 

will increase over time, even though there may be a decline of the far more 

numerous weaker events.

**This lecture is free and open to the public!
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