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Figure SPM.7 | CMIP5 multi-model simulated time series from 1950 to 2100 for (a) change in global annual mean surface temperature relative to
1986-2005, (b) Northern Hemisphere September sea ice extent (5-year running mean), and (c) global mean ocean surface pH. Time series of projections
and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution
using historical reconstructed forcings. The mean and associated uncertainties averaged over 2081-2100 are given for all RCP scenarios as colored verti-
cal bars. The numbers of CMIP5 models used to calculate the multi-model mean is indicated.
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Figure SPM.9 | Projections of global mean sea level rise over the 21st century relative to 19862005 from the combination of the CMIP5 ensemble
with process-based models, for RCP2.6 and RCP8.5. The assessed likely range is shown as a shaded band. The assessed likely ranges for the mean
over the period 2081-2100 for all RCP scenarios are given as coloured vertical bars, with the corresponding median value given as a horizontal
line. For further technical details see the Technical Summary Supplementary Material {Table 13.5, Figures 13.10 and 13.11; Figures TS.21 and T5.22}



From the 2014 IPCC Report (Summary for
Policymakers):

“It is extremely likely* that more than half of the observed in-
crease in global average surface temperature from 1951 to 2010
was caused by anthropogenic increase in greenhouse gas concen-
trations and other anthropogenic forcings together.”

What does this mean? How does IPCC evaluate statements of
this nature?

*probability greater than 95%



Introduction to Detection and Attribution (1)

Detection and Attribution refers to a class of statistical tech-
niques that are used to break down a climate signal (tempera-
tures, precipitation, wind speeds, etc.) into a series of compo-
nents due to various forcing factors.

Typical forcing factors that are considered include greenhouse

gases, other anthropogenic components (including aerosols, which
tend to have a cooling effect), variations in solar output and vol-

canic eruptions. The last two are considered natural forcings.

A forcing factor is said to be detected if there is a statistically
significant contribution based on that factor in the observational
signal.

Among the factors that are detected, the attributions of those
factors are numerical coefficients that represent the contributions
of the individual factors to the overall signal.



Introduction to Detection and Attribution (2)

Detection and Attribution is largely a statistical technique devel-
oped by atmospheric scientists, but during the present decade
has attracted more attention from statisticians.

Its origins are usually attributed to a paper by Hasselmann (1979)
but the concept was reformulated and greatly extended during
the 1990s and 2000s.

During the present decade, there have been a number of at-
tempts to extend the statistical foundations of the method.

This presentation reviews some of the history and background
of this methodology, leading up to a recent paper by Katzfuss,
Hammerling and Smith (Geophysical Research Letters, 2017).
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Hasselmann’s First Approach (1979)

On the signal-to-noise problem in atmospheric response studies

By KLAUS HASSELMANN
Max-Planck-Institur fiir Meteorologie, Hamburg

SUMMARY

The problem of identifying the mean atmospheric response to external forcing in the presence of the
natural variability of the atmosphere is treated as a pattern-detection problem. It is shown that without
application of filtering techniques to reduce the number of degrees of freedom of the response pattern the
atmospheric response inferred from data or model experiments will normally fail a multi-variate significance
test. A step-wise pattern construction method is proposed which avoids these difficulties. Starting from a
given set of anticipated response patterns, a transformed set of patterns is derived which, used as a truncated
basis set to represent the observed response, maximizes the statistical significance of the response. The
patterns are ordered a priori in a sequence reflecting their anticipated contribution to the total response, the
sequence being terminated when the net response falls below a prescribed significance level. In effect the
method filters out the statistically significant components of the atmospheric response. For application to
model experiments a multi-variate analysis of the low-frequency model variability is required.

Overall change (e.g. in temperature field) represented by

n-dimensional vector ®.

Estimated change from data: &

Assume & — & ~ N (0,C)

C estimated from data but treated as known

Test Hy: ® =0 = 2 test



Hasselmann’s First Approach (continued)

e Suppose & = BW where B is a n x p matrix of known basis
functions (interpreted as a p-dimensional ‘“signal™)

e A revised estimate & is chosen to minimize |® — ®|2. This in
turn is used to construct a revised y? text statistic.

e A Kkey part of the method is expansion in principal compo-
nents (EOFs). Hasselmann anticipated that it might in prac-
tice be necessary to restrict to a small number of leading
EOFs (he suggested between 5 and 20).

P2
A optimal signal-to-noise
N direction

g

guessed response

,// =P,
L/ Snoise ellipsoid

Figure 1. Relation between guessed response pattern vector g and maximal significance direction b relative
to error ellipsoid, see Eq. (27).
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Extensions

e [ he initial paper of Hasselmann was followed by a number of
extensions and ramafications in the 1990s, e.g. Hasselmann
(1993), Journal of Climate, Hasselmann (1997), Climate Dy-
namics, Hegerl and North (1997), Journal of Climate, North
and Stevens (1998), Journal of Climate.

e It was designed to be highly multidimensional

e However it was also implicit that a reduction in dimension (via
leading EOFs) was needed to make the method applicable
in practice



The method comes to maturity: Two papers in
1996

A search for human influences on the thermal
structure of the atmosphere

B. D. Santer*, K. E. Taylor*’, T. M. L. Wigley*, T. C. Johns®, P. D. Jones/,
D. J. Karoly', J. F. B. Mitchell*, A. H. Oort”, J. E. Penner', V. Ramaswamy”,
M. D. Schwarzkopf”, R. J. Stouffer” & S. Tett®

* Program for Climate Model Diagnosis and Intercomparison, + Atmospheric Science Division, Lawrence Livermore National Laboratory, Livermore, California
94550, USA

} National Center for Atmospheric Research, Boulder, Colorado 80307-3000, USA

§ Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell RG12 2SY, UK

|| Climatic Research Unit, University of East Anglia, Norwich NR4 7TJ, UK

1 Cooperative Research Centre for Southern Hemisphere Meteorology, Monash University, Clayton VIC 3168, Australia

# NOAA/Geophysical Fluid Dynamics Laboratory, PO Box 308, Princeton University, Princeton, New Jersey 08542, USA

The observed spatial patterns of temperature change in the free atmosphere from 1963 to
1987 are similar to those predicted by state-of-the-art climate models incorporating various
combinations of changes in carbon dioxide, anthropogenic sulphate aerosol and stratospheric
ozone concentrations. The degree of pattern similarity between models and observations
increases through this period. It is likely that this trend is partially due to human activities,
although many uncertainties remain, particularly relating to estimates of natural variability.

NATURE - VOL 382 - 4 JULY 1996

OCTOBER 1996 HEGERL ET AL. 2281

Journal of Climate

Detecting Greenhouse-Gas-Induced Climate Change with an Optimal Fingerprint Method

GaBRIELE C. HEGERL, * HANS vON STORCH, * KLAUS HASSELMANN, *
BENJAMIN D. SANTER, " ULRICH CUBASCH,* AND PHILIP D. JONES?

* Max-Planck-Institut fiir Meteorologie, Hamburg, Germany.
" PCMDI/Lawrence Livermore National Laboraiory, Livermore, California.
& Deutsches Klimarechenzentrum, Hamburg, Germany.
€ Climatic Research Unir, University of East Anglia, Norwich, United Kingdom.

(Manuscript received 26 August 1994, in final form 20 March 1996)
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NATURE - VOL 382 - 4 JULY 1996

Santer et al. (1996)

Fia 1 Modelled and cbserved onal-mean annually averaged changes | C |
in the thermal structure of the abmoesphens, The squilBiium experements by
Tendor ard Penner (TR simulate temperature changes for nominal ‘pre-
sent-cay’ lavels of stmosphenc CO, only (C-TP; a), anthropogenic sulphate
aercsals only (S-TP; k), and combined forcing by OO 4 sulphate serosos
1SC-TP; ) redative to 8 control run with pre-industrial keeals of OOy and no
anthropogenic sulphur emissions, All TR integrations wene at kast 30 vears
in duration, and temperature-change signals were computed usng
avarages aver the last 20 years of the controd run and each peruration
enperiment, Patterns of the resporss to brme-vaning inCreases in green-
house gases onty (C-HE; d ) and in greenhouse gases and acrsols (506-HG;
gl were taken from Semulations pedormed with the Hadey Centre
COCMYY, Terperature-changs signals are the decadal aversges of C-HC
and SC-HG for the modelled “1990=" expressed relative to the respective
C-HC and SC-HC sverages over 1880-1920. The possible effects af
stratosphenc caone reduction over the pariod 19739-20 () @ fom a
recart aquilibrivm expariment by Ramaswamy et ai, ** The sansitivity studies
COMBY (SC-TP -+ Qy; g ard COMB2 (5C-TP + Qy; h) consider the possible
effects of stretospheric 0. depketian on the SC-TF signal. COMB3
(35-TP + C-TP; ) Bustrates the sensitvty of model-chserved pattem simi-
larities Ao & possble ouerestimate of direcl aemsol effects in TP, Obsereed
changes [ {1 are radicsonde-based temperatune massumements fram the
data set by Oort?, and are expressad &s total least-squares linear trends ( C)
ower the 25-year penod extending from May 1963 to Apnl 19848,
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Hegerl et al. (1996)

T T T T T T T T T T T T
-10 08 06 04 -02 0 02 04 06 08 10 12 FiG. 3. Expected pattem of greenhouse warming (i.e., guess pattern) derived from the early industrial climate change (EIN)
simulation (normalized). The pattemn represents the difference between the decades 20762085 and 19861995 of the simulation.
FiG. 2. Observed patterns of 30-yr trends for the periods 1965-1994 (a) and 19161945 (b) in degrees Celsius  The pattem is restricted to space points for which reliable wrends could be calculated since 1949 from the observations.
per decade, calculated from the data of Jones and Briffa (1992, 1994b).
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Alternative Formulation
e Levine and Berliner (J. Clim 12, 564-574, 1999)

e Levine, Berliner and Shea (J. Clim 13, 3805—3820, 2000)
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Optimal Signhal Detection

This is based on Levine's and Berliner's (J. Clim 12, 564-574,
1999) reinterpretation of Hasselman's papersin J. Clim 6, 1957—
1971 (1993) and Climate Dynamics 13, 601-611 (1997).

Suppose the observed climate signal ¥ satisfies

v = U4+ ¥

interpreted as ‘signal+noise”. In practice, we usually assume
both ¥ and ¥° are in fact anomalies from some reference time
period. We also assume

o U5 =3P a8 where gi,...,gp are p known signal patterns
and aq,...,ap are unknown weights; also write ¥° = Ga.

e U is a vector of “errors” with mean 0 and covariance matrix
C.

14



Optimal Fingerprints (Hasselmann)
d; = f1'W is “detector” (and f; is “fingerprint”)
d% = (df,...,d5) = (ff'®, ... £ %)

Fingerprints f; constructed to maximize signal to noise ratio
,02(dS) — (dS)TD_ldS,
(i,7) entry of D is Cov(d;,d;) = Cov(ff W, 1) = £l Cft;.

This optimization problem leads to f* = C~lg. and hence
d* =Gloc-1w.

Statistical significance of the signal determined through p2(d*).

15



Alternative Formulation (Levine & Berliner)
e Regression equation

v = Ga+ ¥

e GLS estimates 4 = (GTC-16)~1GTC-1¥ and hence ¥° =
Ga.

e Under Gaussian assumptions, a ~ N[a, (GICc—1G)~1].

e Test Hy: a = 0 against H, : a #= 0: UMPI test of level «
rejects Hg if

T = vlctlato ey tete e > xI(1 - w).

e But 7 = ¥t (GTC1a) " 1(f)TW = p2(d*). Therefore, the
two tests are equivalent.

16



Other Issues
Estimation of C

They also considered the attribution question — estimates
of a, vector of coefficients of specified basis functions corre-
sponding to known climate signals

Null and alternative hypotheses the wrong way round? Anal-
ogy with bioequivalence problems

Test is usually performed only if initial “detection’” test re-
jects a = 0. But that makes it harded to asses true signifi-
cance level.

17



Bayesian Climate Change Assessment
Levine, Berliner and Shea (J. Clim 13, 3805—3820, 2000)

Idea: Present and alternative Bayesian viewpoint of detection
and attribution procedures

18



The approach of Myles Allen and collaborators

Allen and Tett, “Checking for model consistency in optimal
fingerprinting”, Climate Dynamics, 1999

Allen and Stott, “Estimating signal amplitudes on optimal
fingerprinting, Part I. theory” Climate Dynamics, 2003

Allen, Stott and Jones, “Estimating signal amplitudes on op-
timal fingerprinting, Part II: application to general circulation
models” Climate Dynamics, 2003

Huntingford et al., “Incorporating model uncertainty into at-
tribution of observed temperature change’”, Geophysical Re-
search Letters, 2006
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Allen and Tett (1999), Page 1

y = XB+u
where

e y is vector of observations (¢ x 1)

e X is matrix of m response patterns (£ x m)

e u is ‘“climate noise"”, covariance matrix C

e Assume normalizing matrix P such that PCP! =1, ¢! =

PIP.

Then
Py = PX3+ Pu

where noise Pu has covariance matrix 1.
20



Allen and Tett (1999), Page 2

Then the Gauss-Markov Theorem implies
B = X'ripx)~IxX'pPlpy
with covariance matrix
v(B) = XIcix)—L
Confidence ellipsoid:

B-BTXI'C X)) 1(B-8) ~ X2
Main difficulty: C is unknown.

We could have a have a vector of n independent ‘“noise’” simula-
tions yn and then estimate C = %YNYE but typically n << £ so
C is singular.
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Allen and Tett (1999), Page 3

Resolution:

e Restrict to kx EOFs with largest variance (equivalent to re-
placing P by P®, consisting of the s eigenvectors of C with
largest eigenvalues).

e Independent control runs used to estimate C

Have an estimate V(B) with v degrees of freedom (also needs
to be estimated because of autocorrelation in series of control
runs). Then:

(B-B)"V(B) 1 (B—-B) ~mFny

22



Allen and Tett (1999), Page 4

Final theoretical step: testing the fit

Define

Then

With independent control runs

fj.TC_lﬁ ~J (/{ — M)F,{_mjy.

This can be used as a diagnostic on the model fit and also to
guide the choice of k.

23



Total Least Squares

Basic equation still
™m
Y = > BiXi+n
J=1

where Y is the observational record (e.g. a vector of trend in
temperature means), Xi,..., X, are the signals from m climate
models, and n is an error term.

Instead of ordinary least squares, Allen and Stott (2003) pro-
posed to fit (1) by total least squares, which allows for errors
in the Xj’s as well as Y. Technique extended by Huntingford,
Stott, Allen and Lambert (2006).

The motivation is that, in practice, the X's are also unknown.

We reformulate this based on a classical (non-Bayesian) treat-
ment of the errors in variables problem (Gleser 1981).

24



Single x variable (Allen & Stott)

Observed values of signal components

=3

T

OLS with noise in model-simulated signal

-5 0 5
Model-simulated values of signal components

Observed values of signal components

TLS with noise in model-simulated signal
e A D

al Lo 4 P |

-5 0 5
Model-simulated values of signal components

Fig. 2 a: application of ordinary least squares regression to a
system in which both “model™” (plotted in the horizontal) and
“observations™ (plotted in the vertical) are contaminated with equal
levels of noise. “True™ values (normally unobservable, except this is
a synthetic example, and uncontaminated with any noise) are
plotted as crosses along the dotted line: noise-contaminated
“observations” and “simulation™ are plotted as squares, with the
thin arrow showing the orientation of the noise vector in one case;
best-fit line and reconstructed observations are shown as the
diamonds, with heavy arrow showing the hypothetical noise that is
minimised in the OLS algorithm. The best estimate is biased
towards zero under OLS and., in this example, the 5-95%
confidence interval, shown by the dashed lines, does not include
the correct slope. b: application of total least squares regression to
the same example. TLS minimises the perpendicular distance from
the best-fit line, shown by the heavy arrow, not the vertical distance
minimised by OLS. The bias towards zero slope 1s removed, and
the 5-95% confidence interval on the slope now includes the
correct value

25



Multiple x Variables

Allen and Stott considered the multiple regression extension of
this — key assumption is the same noise structure in each co-
variate and in the control model runs

m
y = Y (x;—v)Bi+vo
i=1
where each v; has the same noise structure as vg.

Motivation for this assumption: we don’'t actually know the noise
structure of either vg or v;, ¢+ > 1, but the only tool we have to
estimate either is the set of control runs, so we assume the same
covariances for control runs as for model simulations that include
forcing factors.

To paraphrase Allen and Stott, a method that even crudely ac-
counts for the variances of the X variables is surely better than
one that ignored these issues altogether.

26



Gleser’s formulation of errors in variables (EIV)

Ref: L.J. Gleser, Annals of Statistics, 1981

xi:<$il>:<ui1>+(eil>, (1)
L42 Uz2 €32

x;1 and x;» observations of dimensions p and r respectively, u;1
and u;> are true unobserved signals, e;; and e;» noise with co-
variances o2I, and o2I,. Also

uio = DBuyy. (2)

MLE: choose B and u;1,...,u;, t0O minimize

Q= 5 22(%1 i)’ (21 — uin) + 55 Z(fﬂzz Bu;i1)" (2 — Bu;1).

27
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Computing the MLE

Choose B to minimize

~

1
Q = 52 Z(ﬂi’iz — Bxj1)) (I, + BBY) " Y(aj0 — Bz;1).  (4)

(also called generalized least squares by Gleser)

28



Asymptotic Distribution Theory (Gleser)

Assume estimator B,, based on n observations, U1 the pxn matrix
whose columns are wu;1, ..., U;jp.

[Assumption A:] e; are i.i.d. random vectors with mean 0 and
common covariance matrix oI,

[Assumption C:] A = limp—een~1UU{ exists, positive definite.

[Assumption E:] The cross-moments of the common distribu-
tion of the e; are identical, up to and including moments
of order 4, to the corresponding moments of the multivari-
ate normal distribution with the same mean and covariance
matrix.

Then the elements of the nl/2(B — B) have an asymptotic rp-
dimensional normal distribution with mean O and the covariance
between the (i,5) and (i, ') elements is given by o?[c?A~1(I,+
B'B)" 1At 4+ A1l I+ BBT].

29



Application to Allen-Stott Model
Identify x;» with Y (single observation, dimension r)

Identify z;1 with (X1,..., Xm)? (dimension rm). Also

B = (511} Bol, ... BmIf,«). (5)

GLSE chooses 34, ..., Bm to minimize
(Y =3 B;X)1 (Y — X, 8iX5)
1+ 357 |

Equivalent to Allen and Stott (2003). In principle, we could use
Gleser’s theory to approximate the asymptotic (co-)variances of
the estimators, though this is problematic because n = 1...

S =

(6)

30



Huntingford, Stott, Allen and Lambert(2006)
Previously

y = i (x; —v;)B; + vo (7)
i=1

Now assume each signal is derived as a mean Xx; over several
models and rewrite (7) as

y = > X —v;—p)Bi+vo (8)
i=1

where u; is intended to capture the uncertainty of model projec-
tions for signal «z.

Assume different noise structure for p; as for v;, uses Bayesian
EIV method from Nounou et al., AIChE J. (2002) (‘“Bayesian
latent variable regression’)

31



More Recent Developments

A. Ribes, J.-M. Azais and S. Planton (2009), Adaptation of
the optimal fingerprint method for climate change detection
using a well-conditioned covaroance matrix estimate. Cli-
mate Dynamics

A. Ribes, S. Planton and L. Terray (2013), Application of
regularised optimal fingerprinting to attribution. PartI: Method,
properties and idealised analysis. Climate Dynamics

A. Hannart, A. Ribes and P. Naveau (2014), Optimal finger-
printing under multiple sources of uncertainty. Geophysical
Research Letters

A. Hannart (2016), Integrated optimal fingerprinting: Method
description and illustration. Journal of Climate

M. Katzfuss, D. Hammerling and R. Smith (2017), A Bayesian
hierarchical model for climate change detection and attribu-
tion. Geophysical Research Letters
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The Model of Katzfuss—Hammerling—Smith (1)

Consider the basic structure
M
Yy | X]_,...,XM,,B,C,CE ~ Nn Z /Bijac . (9)
m=1

where

e vy is the vector of “true” temperatures (n x 1);

o x;p, fOr 1 < m < M is the “signal” for the m'th forcing factor;

e 3 is the vector of regression coefficients (M x 1);

e C is the covariance matrix representing internal variability;

33



The Model of Katzfuss—Hammerling—Smith (2)

T he observational error equation is

yOD |y, W ~ No(y,W), i=1,..,N, (10)

for N independent reconstructions of y with assumed covariance
matrix W = diag(w1q,...,wn).

The model error equation is

x| xm, C ~ Np(xm,C), £=1,...,Lm, m=0,..., M. (11)

34



Most of the remaining slides are taken from a presentation pre-
pared by Dorit Hammerling (National Center for Atmospheric
Research), based on the paper by Katzfuss, Hammerling and
Smith (2017, Geophysical Research Letters)
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Bayesian D&A regression model

Bayesian regression model:
yIX, 8,C ~ Ny ( ZJ2; B, C)

D&A consists of determining the posterior distribution of the 3; (mainly,
P(5; > Oly. X))

Challenge: y, X = (xq,..., Xm), B3, and C are all unknown

B NCAR
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Uncertainty in observed temperature changes

True temperature changes in grid cells over the globe are unknown
But: We have an ensemble of N temperature time series, which can be
converted to an ensemble of N temperature changes

We assume that

iid

y(')ly‘WNNn(y.W). !ZI.N

where W is a covariance matrix describing the variability of the ensemble
members around the true temperature change

BNCAR
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Uncertainty in temperature under forcing scenarios

The (true) temperature changes due to forcing are also unknown, but we
have an ensemble of GCM outputs for each forcing scenario:

1. €% Ny(x;.€). I=1.....L. j=1....m.

where L; is the number is the number of GCM runs under the jth forcing
scenario, and climate variability is assumed to have covariance matrix C.

B NCAR



Model parameters

e Climate variability: Typically, C is expanded in empirical orthogonal
functions and then truncated:
C = BKB’, where B contains the first r principal components
estimated from control runs, K = diag{e™, ..., e} and r << n

e Observation uncertainty: Currently, W = 2W, where W is a
diagonal matrix containing the empirical variances of {y(/)}
e Priors:

e Noninformative priors for 3 and o
e Vaguely informative priors for Aq, . ... A

B NCAR



Inference

MCMC with adaptive Metropolis-Hastings updates
High-dimensional problem — Integrate out y and X

MCMC computations only rely on low-dimensional quantities and are very
fast, even for almost a million data points

B NCAR
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Bayesian model averaging

Previous slides assumed r, the number of EOFs, to be fixed.

The number of variables in the model depends on r — standard MCMC
sampler cannot be used to make inference on # and r simultaneously.

Instead we perform Bayesian model averaging (BMA) to average the

posterior results for each value of r using weights automatically chosen by
the data.

B NCAR
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Bayesian model averaging (cont.)

The posterior of 3 averaged over the posterior of r (i.e., taking the
uncertainty about the value of r into account) is given by

max

BIY. X]= D [Blr. Y. X][r|y. X].

i=min

Due to the uniform prior on r, the posterior probability of r = r; is given
by [ri|V, X] o [V|ri, X][ri] o< [V|ri, X].

Fortunately, a good estimate of marginal likelihood [)|r;, X] can be

obtained using the evaluations of the likelihood already performed in the
MCMC procedure as

M
[yri_X]:Al/’;[ym.g(f).x][g(f)m] NNCAR
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Computational considerations

Bayesian modeling averaging approach is ideally suited for parallelization.

Yellowstone Environment

g Yellowstone
3 Geyser & HPC resource, 1.5 PFLOPS peak
3 . A
:
. ) g
§ ol 1 l
Science Gateways Data Transfer \‘t:" NN
\ g A RemoteVis  PartnerSites  XSEDE' T Vv SN\ N
BINCAR 43
Parallelizing over r (161EOFs): 40 hours on laptop — 2 hours on !3\<Iey§er --------
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The data

e Climate Model Intercomparison project (CMIP5) models: suite of
more than 20 models, of which we use as subset (BCC CSM1, CAN
ESM2, CSIRO, GISS, IPSL, GFDL)

¢ Remote Sensing Systems temperature retrievals based on microwave
sounding units (MSUs): N = 396 realizations

Based on these sources, we consider the linear trends (slopes) of annual
lower-tropospheric temperatures between 1979 and 2005 in n = 2107
5° x 5% grid cells on the globe (between —70° and 80° latitude with an
altitude lower than 3km)

—

BYNCAR
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Linear trends 1979-2005: Natural-only forcing

bcc csm1 can esm?2

90 E 90 W 9O E 180E 90W

180 E

giss e2 r pl giss e2 r p3

90 E 180 E 90 W

90 W 0 9 E 180 E

Units are °C per decade
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Linear trends 1979-2005: Anthropogenic-only forcing

csiro gfdl 08

0 00 F 180 F so‘w i

giss e2 r pl

9E WOE SOW

Units are °C per decade
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Linear trends 1979-2005: giss models

Natural-only forcing Anthropogenic-only forcing

glss e2rpl giss e2 r pl

180 E

giss e2 r p3 gissiel r p3

90 E 180 E oow : »- 180 E

Units are °C per decade

47



Linear trends in satellite observations 1979-2005

Average of 396 ensemble members
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Posterior densities for s for all values of r

All available GCM models for forced runs, bcc model for control (18 runs)

blue(/31) corresponds to anthropogenic forcings, red(/3») to natural forcings
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Weights for all values of r

All available GCM models for forced runs, bcc model for control (18 runs)
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Bayesian model averaged posterior densities for /Is

All available GCM models for forced runs, bcc model for control (18 runs)

4
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/
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i /
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1 1.2

blue(/31) corresponds to anthropogenic forcings, red(3,) to naﬁﬂw
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Posterior densities using different control runs
Control runs: gfdl

Control runs: bcc
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Relation to Method of Hannart
(J. Climate 2016)

Hannart presented an “integrated Optimal Fingerprinting” ap-
proach that has several overlaps with the current method

e Not expicitly Bayesian but uses several elements derived from
Bayesian theory, in particular, integrated likelihoods

e Initial C = S where S is sample covariance matrix from con-
trol model runs

e Improved estimate Co, = aA + (1 — a)S for suitably chosen
a, A

e Inverse Wishart “prior distribution”™ on C; integrate out C
from Likelihood

e Didn’t take account of observational uncertainty

e Open question which method performs better
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Summary

BHM allows natural modeling of uncertainty in all quantities in the
D& A regression model

o Posteriors take all (modeled) uncertainties into account
e Results not sensitive to priors

e BUT results are sensitive to choice of control runs

Future work:
e |nference on EOFs themselves

e Or completely different approach to estimating covariance

BRNCAR
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For another viewpoint on this whole subject, I recommend the
video by Aurélien Ribes from BIRS

https://www.birs.ca/events/2016/5-day-workshops/16w5092 /videos
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