
Data 
• Observational data from CRU (Climate Research Unit, 

University of East Anglia, UK) – monthly averages on 5ox5o grid 
boxes, aggregated to JJA average anomalies over 
– Europe: spatial averages over 10oW-40oE, 30oN-50oN (2003 value was 

1.92K but 2012 almost the same) 

– Russia: spatial averages over 30oE-60oE, 45oN-65oN (2010 value 3.65K) 

– Central USA (including Texas and Oklahoma): spatial averages over 
90oW-105oW, 25oN-45oN (2011 value 2.01K) 

• Climate model data from CMIP3 
– 14 climate models 

– Total of 64 control runs, 44 twentieth century runs, 34 future 
projections under A2 scenario 

– Same spatial regions as observational data, converted to anomalies 
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Europe Summer Mean Temperatures 
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Russia Summer Mean Temperatures 
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Central USA Summer Mean Temperatures 
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Introduction To Extreme Value Theory 
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Europe Summer Mean Temperatures 
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Europe Summer Mean Temperatures With Trend 
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Russia Summer Mean Temperatures 
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Russia Summer Mean Temperatures With Trend 
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Central USA Summer Mean Temperatures 
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Central USA Summer Mean Temperatures With Trend 
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Bayesian Calculations 
• Focus on posterior distribution of binary log of threshold exceedance 

probability (BLOTEP) 

• Use models both with and without trends 

• Use 80th (solid curve), 75th (dashed) and 85th (dot-dashed) percentiles for 
thresholds 
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What’s Next? 
• Obvious strategy at this point is to rerun the GEV calculation on the model data 

• But this runs into the scale mismatch problem: data plots shows that the models and 
observations are on different scales, so we should expect the extreme value parameters to 
be different as well 

• Requires a more subtle approach – hierarchical modeling 
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Proposed Hierarchical Model 
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Bayesian Statistics Details 
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Europe Summer Mean Temperatures With Trend 
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Europe Summer Mean Temperatures With Trend  
and Central 50% of Hierarchical Model Distribution 
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Russia Summer Mean Temperatures With Trend 
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Russia Summer Mean Temperatures With Trend 
and Central 50% of Hierarchical Model Distribution 
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Central USA Summer Mean Temperatures With Trend 
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Central USA Summer Mean Temperatures With Trend and 
Central 50% of Hierarchical Model Distribution 
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Posterior Densities for the BLORRAT 
(numbers are for solid curves and equal weights; dashed curves allow 

for different weights between climate models and observations) 
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 Changes in Projected Extreme Event Probabilities Over Time 
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Conclusions 

• For each of Russia 2010, Central USA 2011 and 
Europe 2012 events, estimated risk ratio is at least 
2.3, and it’s likely (probability at least .66) that the 
risk ratio is >1.5. 

• We also computed future projections of extreme 
event probabilities; sharp increase for Europe; much 
less so for the other two regions studied 

• Possible extension: Look at joint distributions of 
multiple events (e.g. extreme temperature and 
droughts) 
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JOINT DISTRIBUTIONS OF
EXTREME EVENTS
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Example 1. Herweijer and Seager (2008) argued that the persistence of
drought patterns in various parts of the world may be explained in terms of
SST patterns. One of their examples (Figure 3 of their paper) demonstrated
that precipitation patterns in the south-west USA are highly correlated with
those of a region of South America including parts of Uruguay and Argentina.

I computed annual precipitation means for the same regions, that show the
two variables are clearly correlated (r=0.38; p¡.0001). The correlation coef-
ficient is lower than that stated by Herweijer and Seager (r=0.57) but this
is explained by their use of 6-year moving average filter, which naturally in-
creases the correlation.

Our interest here: look at dependence in lower tail probabilities

Transform to unit Fréchet distribution (small values of precipitation corre-
sponding to large values on Frchet scale)
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Figure 1. Left: Plot of USA annual precipitation means over latitudes 25-
35oN, longitudes 95-120oW, against Argentina annual precipitation means
over latitudes 30-40oS, longitudes 50-65oW, 1901-2002. Right: Same data
with empirical transformation to unit Fréchet distribution. Data from gridded
monthly precipitation means archived by the Climate Research Unit of the
University of East Anglia.
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Example 2. Lau and Kim (2012) have provided evidence that the 2010
Russian heatwave and the 2010 Pakistan floods were derived from a common
set of meteorological conditions, implying a physical dependence between
these very extreme events.

Using the same data source as for Example 1, I have constructed summer
temperature means over Russia and precipitation means over Pakistan corre-
sponding to the spatial areas used by Lau and Kim.

Scatterpolt of raw data and unit Fréchet transformation. 2010 value approx-
imated — an outlier for temperature but not for precipitation.
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Figure 2. Left: Plot of JJA Russian temperature means against Pakistan JJA
precipitation means, 1901-2002. Right: Same data with empirical transfor-
mation to unit Fréchet distribution. Data from CRU, as in Figure 1. The
Russian data were averaged over 45-65oN, 30-60oE, while the Pakistan data
were averaged over 32-35oN, 70-73oE, same as in Lau and Kim (2012).

5



Methods

Focus on the proportion by which the probability of a joint ex-

ceedance is greater than what would be true under independence.

Method: Fit a joint bivariate model to the exceedances above a

threshold on the unit Fréchet scale

Two models:

• Classical logistic dependence model (Gumbel and Mustafi

1967; Coles and Tawn 1991)

• The η-asymmetric logistic model (Ramos and Ledford 2009)
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Ref:  Alexandra Ramos and Anthony Ledford (2009), A new class of models for 

bivariate joint tails, J.R. Statist. Soc. B 71, 219-241. 
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Logistic Model Ramos-Ledford Model
Estimate 90% CI Estimate 90% CI

10-year 2.7 (1.2 , 4.2) 2.9 (1.2 , 5.0)
20-year 4.7 (1.4 , 7.8) 4.9 (1.2 , 9.6)
50-year 10.8 (2.1 , 18.8) 9.9 (1.4 , 23.4)

Table 1. Estimates of the increase in probability of a joint ex-
treme event in both variables, relative to the probability under in-
dependence, for the USA/Uruguay-Argentina precipitation data.
Shown are the point estimate and 90% confidence interval, under
both the logistic model and the Ramos-Ledford model.

Logistic Model Ramos-Ledford Model
Estimate 90% CI Estimate 90% CI

10-year 1.01 (1.00 , 1.01) 0.33 (0.04 , 1.4)
20-year 1.02 (1.00 , 1.03) 0.21 (0.008 , 1.8)
50-year 1.05 (1.01 , 1.07) 0.17 (0.001 , 2.9)

Table 2. Similar to Table 1, but for the Russia-Pakistan dataset.
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Conclusions

• The USA–Argentina precipitation example shows clear de-

pendence in the lower tail, though the evidence for that rests

primarily on three years’ data

• In contrast, the analysis of Russian temperatures and Pak-

istan rainfall patterns shows no historical correlation between

those two variables

• Implications for future analyses: the analyses also show the

merits of the Ramos-Ledford approach to bivariate extreme

value modeling. The existence of a parametric family which

is tractable for likelihood evaluation creates the possibility of

constructing hiterarchical models for these problems.
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At least three methodological extensions, all of
which are topics of active research:

1. Models for multivariate extremes in > 2 dimensions

2. Spatial extremes: max-stable process, different estimation

methods

(a) Composite likelihood method

(b) Open-faced sandwich approach

(c) Approximations to exact likelihood, e.g. ABC method

3. Hierarchical models for bivariate and spatial extremes?
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