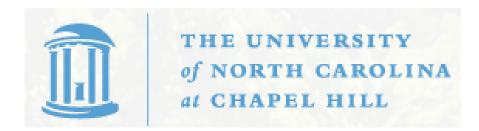
A CONDITIONAL APPROACH TO EXTREME EVENT ATTRIBUTION Richard L. Smith

University of North Carolina, Chapel Hill, USA rls@email.unc.edu

IDAG 2023, Exeter, July 5, 2023

Slides, datasets etc.: http://rls.sites.oasis.unc.edu/ClimExt/intro.html



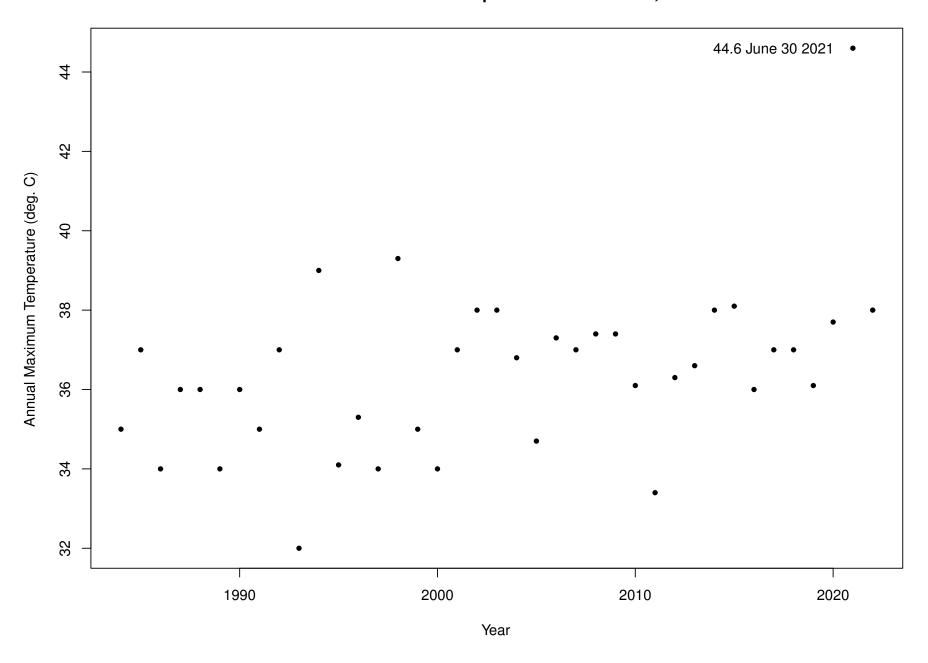
Objectives

- 1. Develop an automated method of extreme event attribution analysis using only public data sources
- 2. Trying to extend existing approaches, not contradict them
- 3. Acknowledging that dynamical methods will ultimately outperform statistical methods, but the latter are much quicker to calculate and provide an independent validation
- 4. Key idea of this talk: include a *conditioning variable* some regional climate indicator at a more localized scale than GMST
- 5. Second key idea: projections of future extreme event probabilities

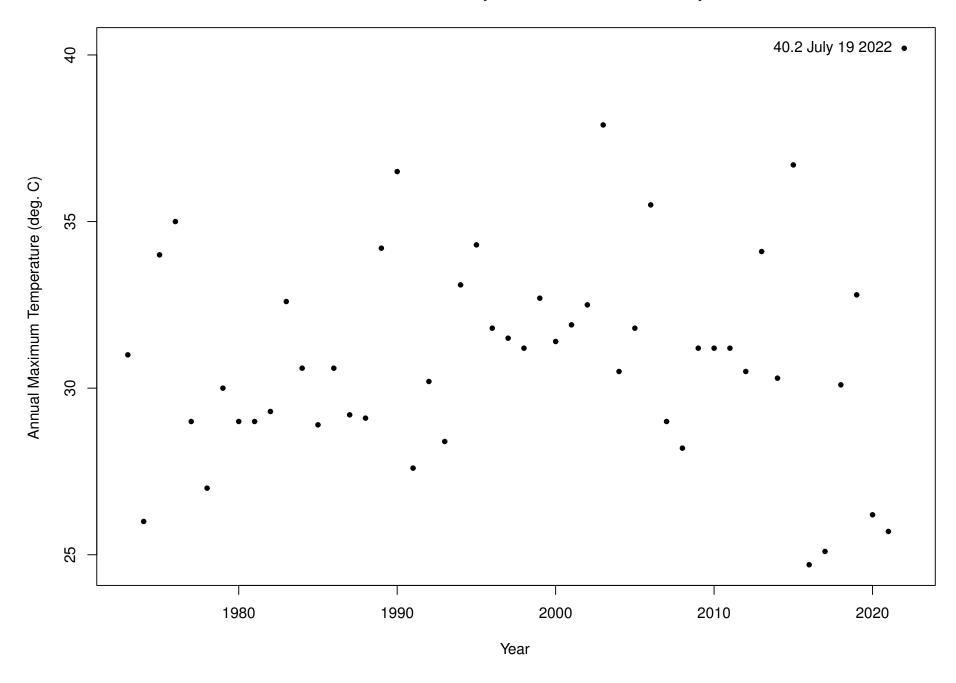
I. Introduction

I begin with three examples of datasets that contain extreme events

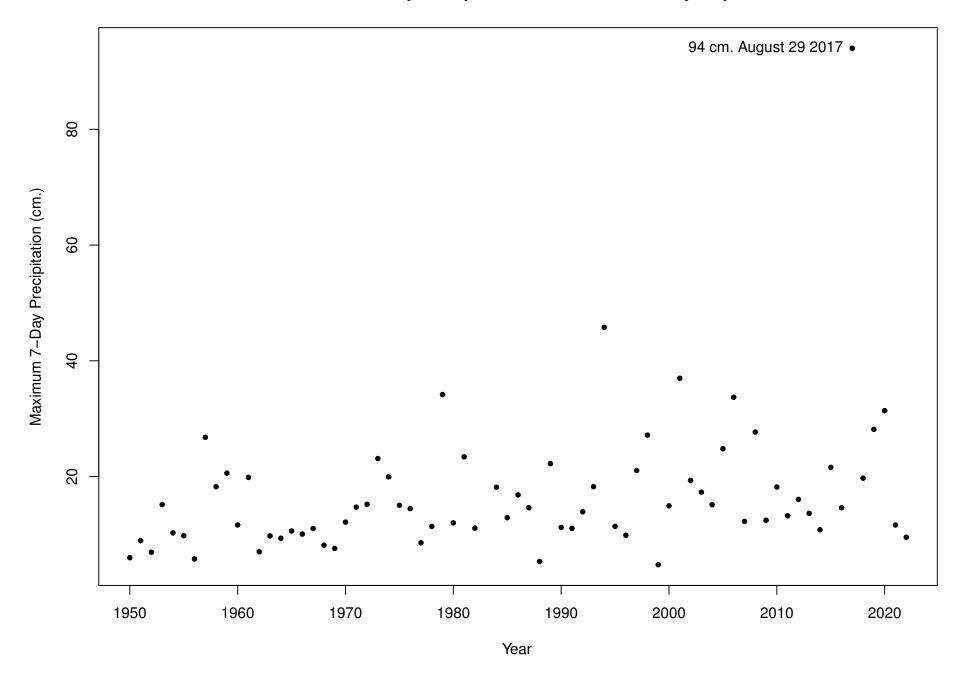
Annual Maximum Temperatures in Kelowna, BC



Annual Maximum Temperatures at Heathrow Airport



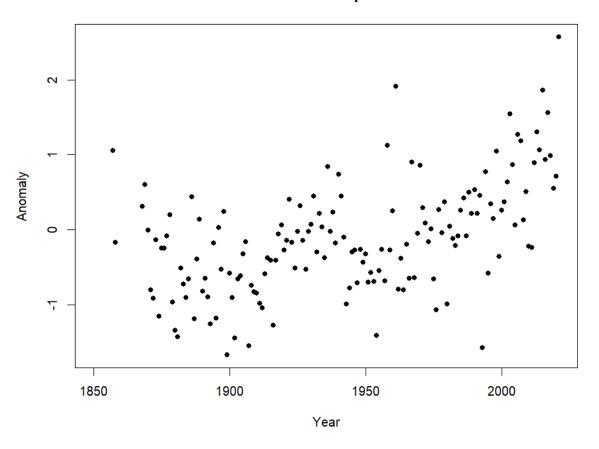
Maximum 7–Day Precipitations at Houston Hobby Airport



For each of these examples, I have collected weather data from multiple stations in the same region (from the Global Historical Climatological Network), and also calculated a *regional variable* that includes annual or seasonal maxima from spatially aggregated data (from the Climate Research Unit of the University of East Anglia)

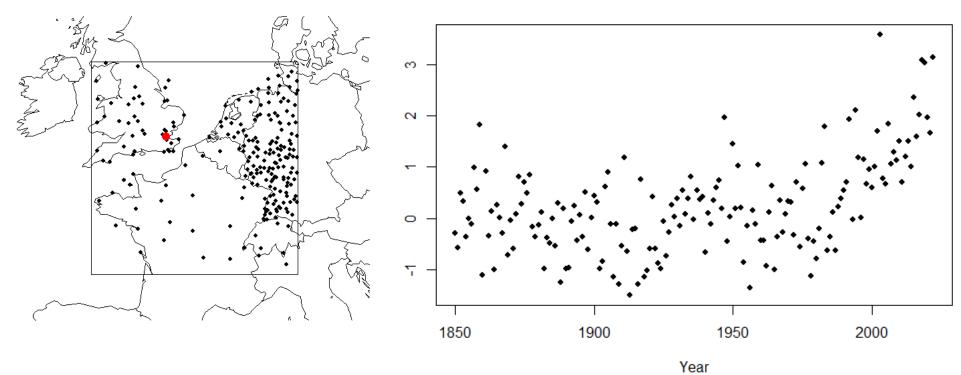
Pacific Northwest Region

Pacific Northwest Summer Mean Temperature Anomalies 1850-2021

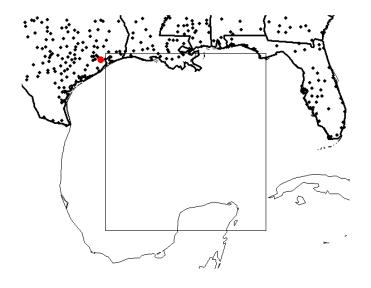


Northern Europe Region

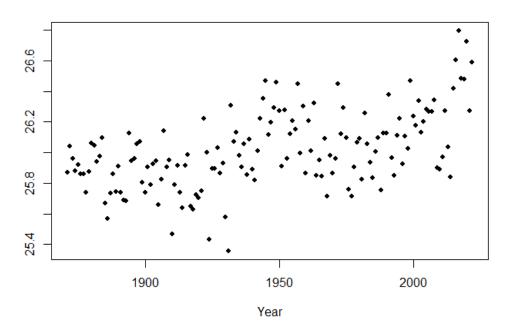
Northern Europe Summer Mean Temperature Anomalies 1850-2022

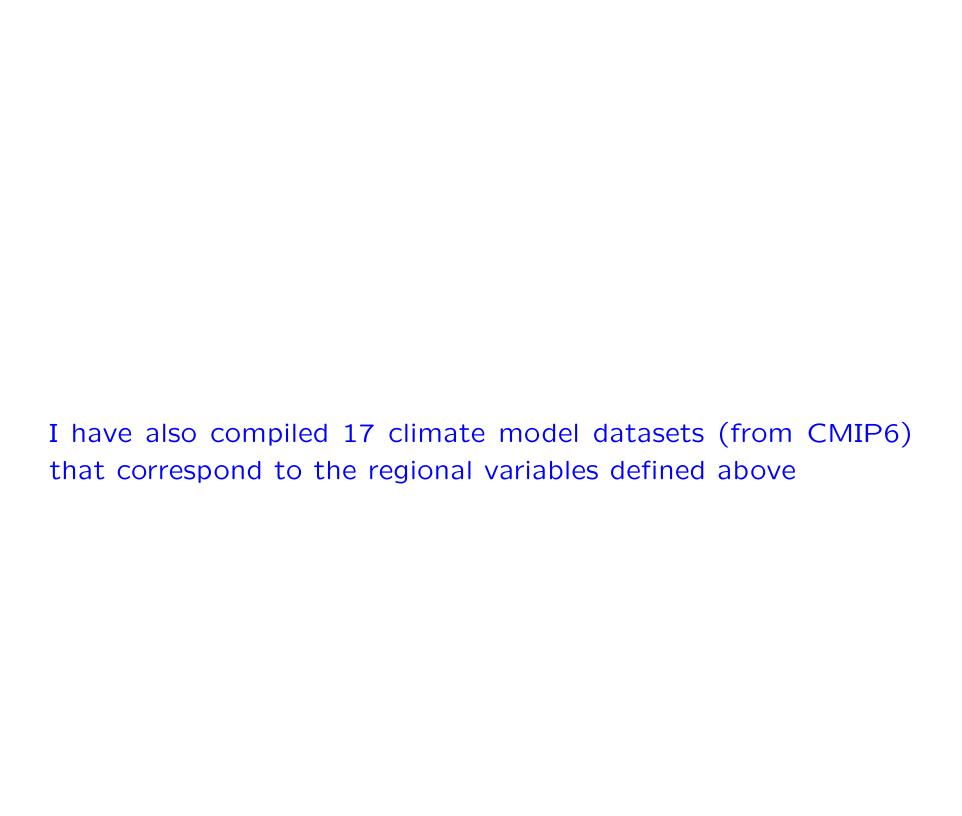


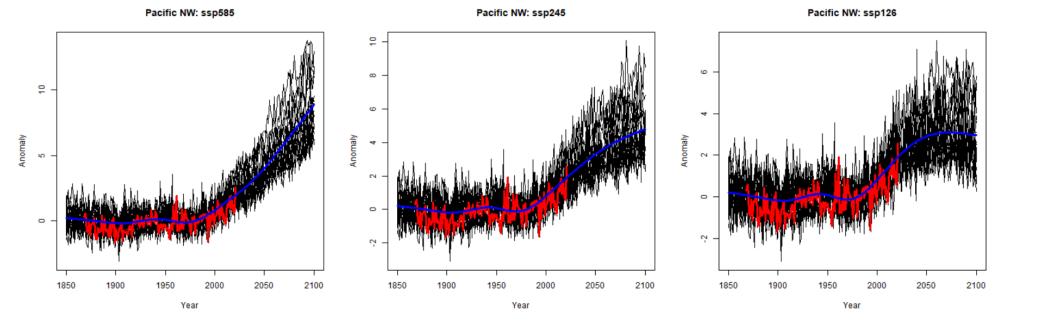
Gulf of Mexico Region

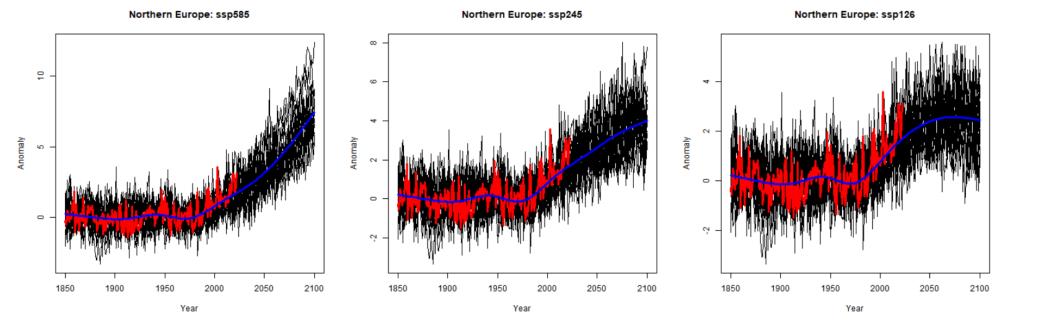


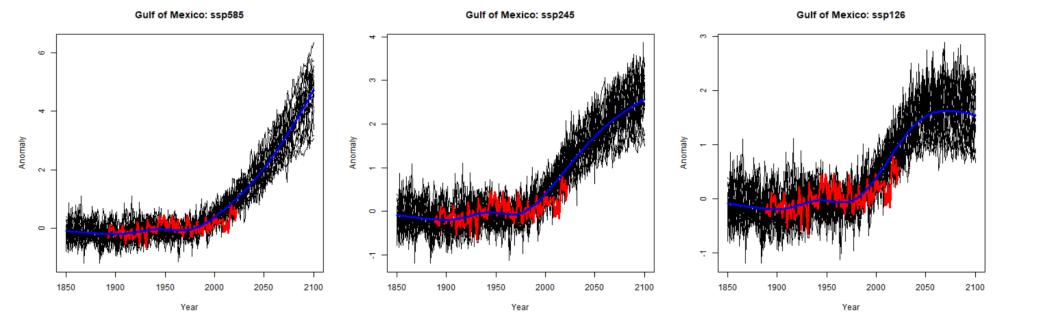
Gulf of Mexico Jul-Jun SST Means 1871-2022











II. Statistical Analysis

- IIa. Used the Generalized Extreme Value (GEV) for each station with regional variable as a covariate
- IIb. Combine stations using a spatial model
- IIc. Climate models to project the regional variable forwards and backwards in time
- IId. "End to end" analysis to show how the extreme event probability changes corresponding to climate variation (including uncertainty bounds)

IIa. GEV Analysis

$$G(y) = \Pr\{Y \le y\} = \exp\left\{-\left(1 + \xi \frac{y - \mu}{\psi}\right)_{+}^{-1/\xi}\right\}$$

- ullet Parameters $\mu,\ \psi,\ \xi$ depend on time and space
- Time dependence based on regional variable as a covariate
- Point of clarification: There is a debate in the literature about whether the analyzed data should include the extreme event of interest. The results I am showing here do *not* do this: the analyses for Kelowna, London and Houston are based on station data up to 2020, 2021 and 2016 respectively.

Covariate Models

(Risser and Wehner 2017, Russell et al. 2020)

$$\mu_{s,t} = \theta_{s,1} + \theta_{s,4}X_t,$$

$$\log \psi_{s,t} = \theta_{s,2} + \theta_{s,5}X_t,$$

$$\xi_{s,t} = \theta_{s,3},$$

Define a parameter vector $\Theta_s = \begin{pmatrix} \theta_{s,1} & \dots & \theta_{s,5} \end{pmatrix}$ at each site s; a 5-dimensional parameter vector for each site s.

Extension: $\log\left\{\frac{1+\xi_{s,t}}{1-\xi_{s,t}}\right\}=\theta_{s,3}+\theta_{s,6}X_t$ (6-parameter model), also combined into Θ_s

IIb. Spatial Extremes Analysis

Objective: Come up with a model for interpolating the GEV distributions between stations, and also improving the analysis at individual stations by "borrowing strength" across stations.

- Latent process approach: Russell, Risser, Smith and Kunkel (2020)
- Idea is to "combine strength" across different stations
- Fit a spatial model to all the stations, then project backwards to specific locations (including the stations)
- Several other approaches, see in particular Zhang, Risser,
 Wehner and O'Brien (forthcoming)

Kelowna, B.C. (Single Station Approach)

5-Par Model:

Parameter	Estimate	SE	t-val	p-val
$ heta_1$	34.8265	0.2511	138.7138	0.0000
$ heta_2$	0.0703	0.1812	0.3882	0.6979
$ heta_3$	-0.3709	0.3533	-1.0497	0.2939
$ heta_{4}$	1.8317	0.2708	6.7642	0.0000
$ heta_5$	-0.0958	0.3372	-0.2841	0.7763

MLE probability of exceeding 44.6°C in 2021, given X_{2021} : 0.

Bayesian posterior mean: 0.012 (1-in-83-year event, even *given* the high regional temperature)

6-Par Model:

Parameter	Estimate	SE	t-val	p-val
$ heta_1$	34.8386	0.2809	124.0051	0.0000
$ heta_2$	0.1397	0.1866	0.7486	0.4541
$ heta_3$	-0.9475	0.4582	-2.0679	0.0386
$ heta_{4}$	1.8494	0.2686	6.8861	0.0000
$ heta_5$	-0.2301	0.2755	-0.8352	0.4036
$ heta_6$	1.1113	0.7217	1.5399	0.1236

MLE probability for 2021 is 0.072, Bayesian 0.076 (1-in-13-year)

Results: Kelowna (6-Par Spatial Model)

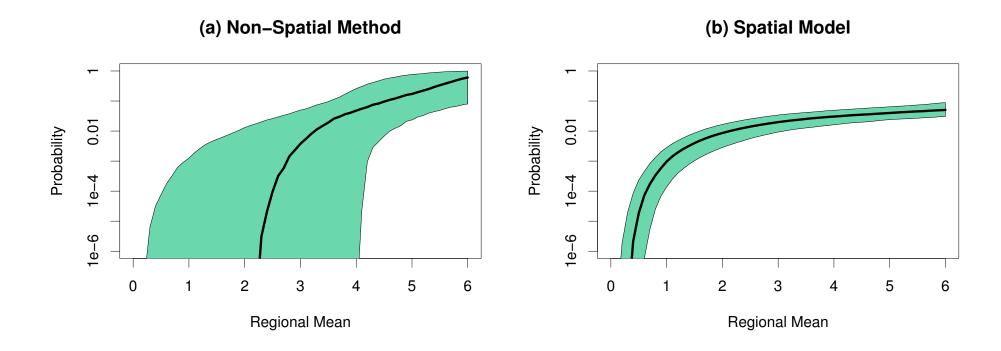
MLE Analysis

	Parameter	Estimate	SE	t-val	p-val
	$ heta_1$	34.8386	0.2809	124.0051	0.0000
	$ heta_2$	0.1397	0.1866	0.7486	0.4541
S	$ heta_3$	-0.9475	0.4582	-2.0679	0.0386
	$ heta_{4}$	1.8494	0.2686	6.8861	0.0000
	$ heta_5$	-0.2301	0.2755	-0.8352	0.4036
	$ heta_6$	1.1113	0.7217	1.5399	0.1236

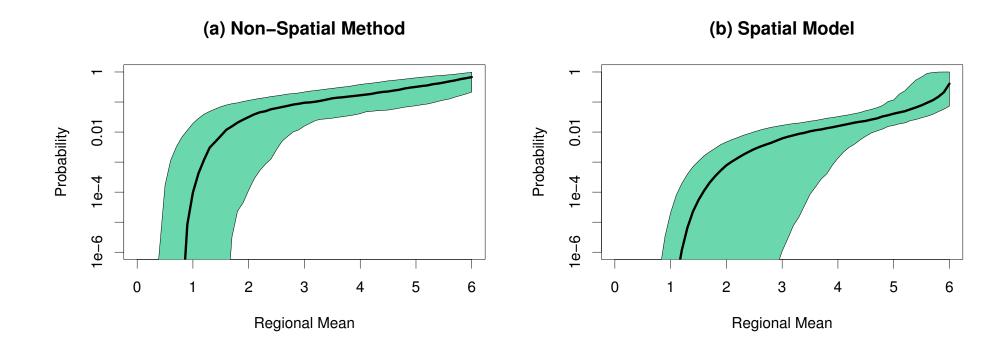
Spatial Analysis

	Parameter	Estimate	SE	t-val	p-val
ĺ	$ heta_1$	34.8437	0.1767	197.2273	0.0000
	$ heta_2$	0.1099	0.0808	1.3597	0.1739
5	$ heta_3$	-0.5908	0.1272	-4.6438	0.0000
	$ heta_{4}$	1.7402	0.1530	11.3750	0.0000
	$ heta_5$	-0.3748	0.1219	-3.0754	0.0021
	$ heta_6$	0.4290	0.2025	2.1185	0.0341

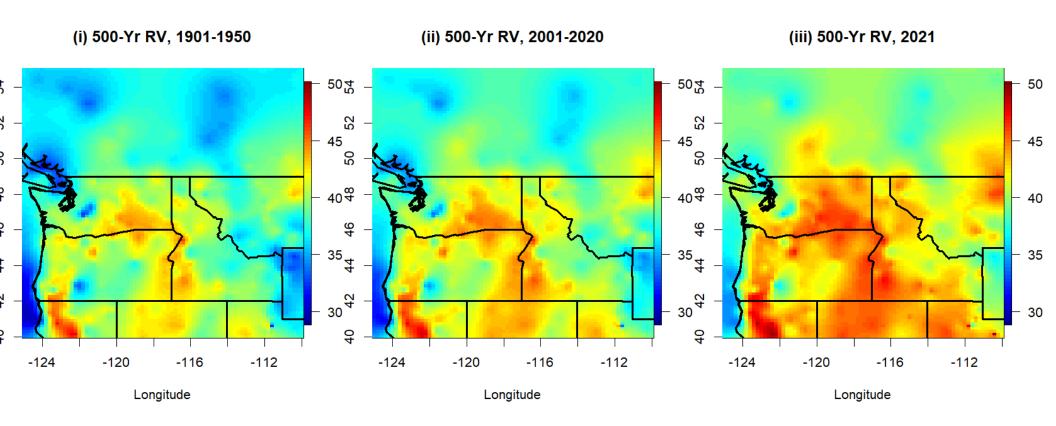
Estimates and 66% Credible Intervals for Mean Exceedance Probability: Comox, B.C.



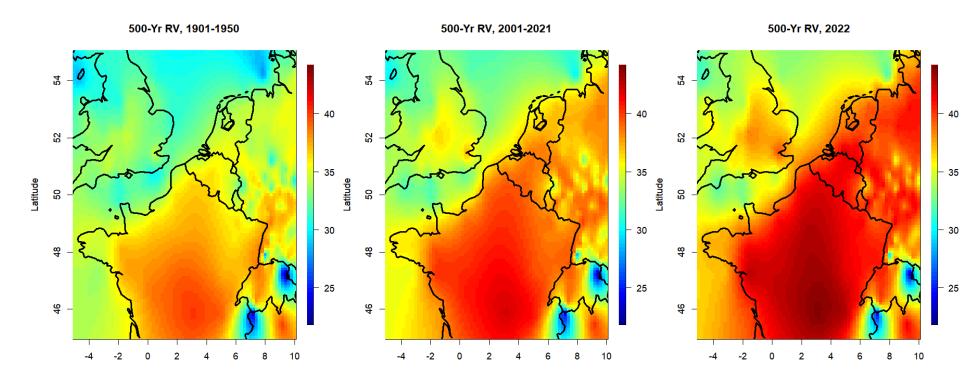
Estimates and 66% Credible Intervals for Mean Exceedance Probability: Kelowna (with monotonicity constraint)



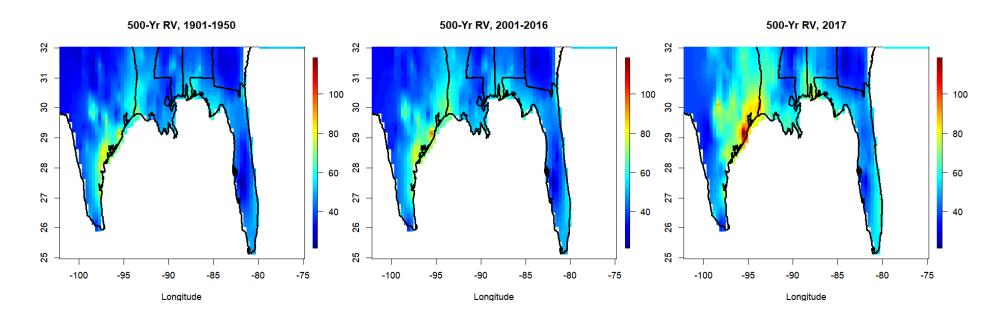
PNW: 500-year return values for (i), (ii), (iii)



NEU: 500-year return values for (i), (ii), (iii)



GOM: 500-year return values for (i), (ii), (iii)



Houston, we have a problem

Looking at the Probabilities of Individual Events

Conditional probabilities of exceeding 2021 temp in PNW:

	(i) 1901–1950	(ii) 2001–2020	(iii) 2021
Kelowna (44.6°C)	3×10^{-12}	8.6×10^{-6}	0.0061
All Canadian stations	0.0081	0.0185	0.067

Conditional probabilities of exceeding 2022 temp in UK:

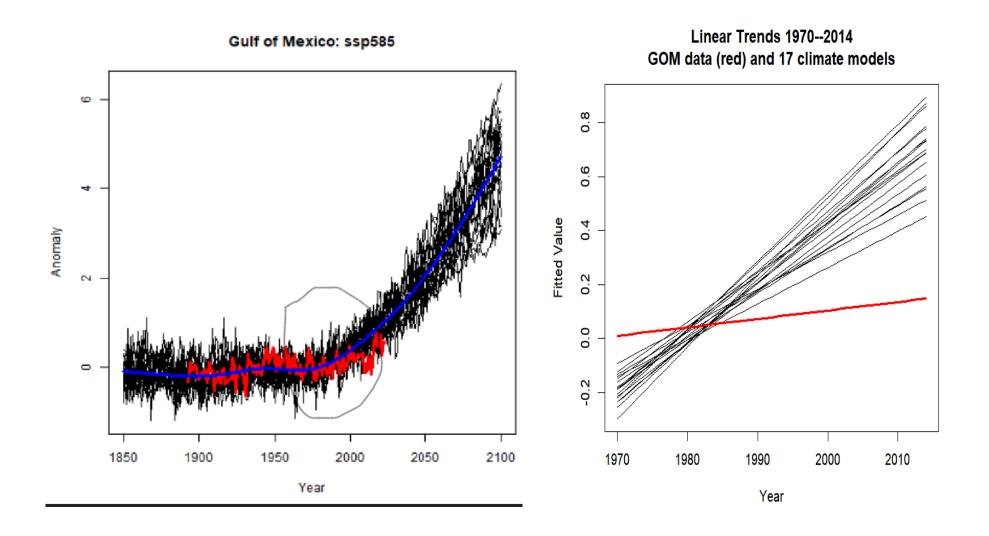
	(i) 1901–1950	(ii) 2001–2021	(iii) 2022
Heathrow	0	3.1×10^{-5}	0.017
All U.K. stations	0.0081	0.0319	0.095

Conditional probabilities of exceeding 2017 precip in Houston:

	(i) 1901–1950	(ii) 2001–2016	(iii) 2017
Houston Hobby	4.7×10^{-5}	0.00014	0.0023
All stations > 70 cm	0.00017	0.00030	0.0023

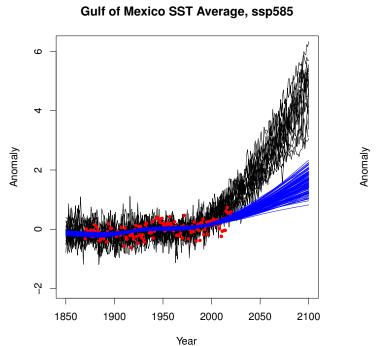
Still haven't introduced climate models into the discussion

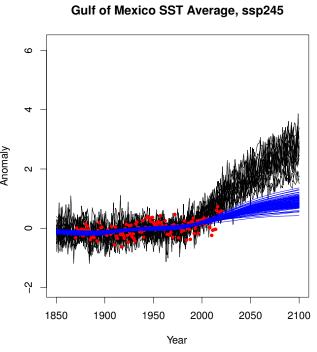
IIc: Projecting the Distribution of the Regional Variable Forwards and Backwards in Time

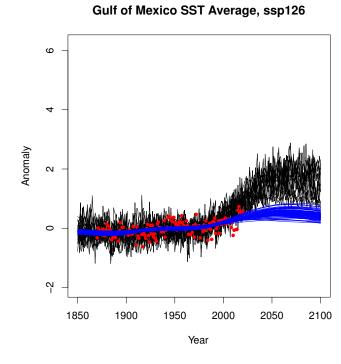


- Obvious method: regress observed regional value on 17 climate models, then use standard prediction theory
 - Objection: ignores variability in the covariates (climate model)
- To accommodate this feature, we need a model for the joint error distribution of 17 climate models. They are not independent!
- Typical solution: use principal components (empirical orthogonal functions), but it's not clear how to accommodate variability in the PCs (side note: Katzfuss, Hammerling and Smith (2017, GRL) proposed a Bayesian solution to detection and attribution, but did not resolve this question)
- Alternative: factor analysis (FA) instead of PCs
- FA models are based on unobserved latent components, easy to implement via Gibbs sampling (don't need Metropolis)
- But.... still susceptible to overfitting, possible lack of proprietary of posterior distribution
- I have avoided these issues by using a "shrinkage prior" formulation of Bhattacharya and Dunson (2011), allows arbitrarily many factors (I actually used 2)

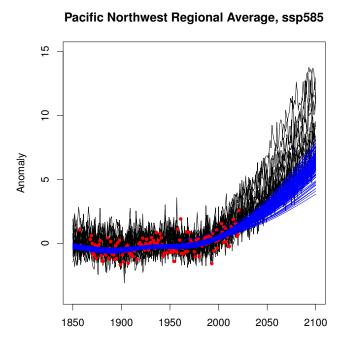
Regional Variable Projections: Gulf of Mexico



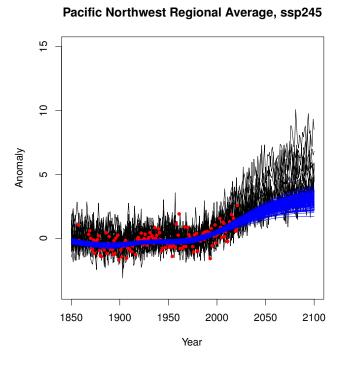


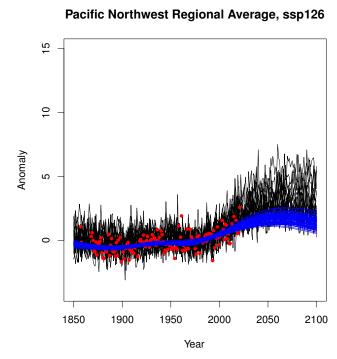


Regional Variable Projections: Pacific Northwest

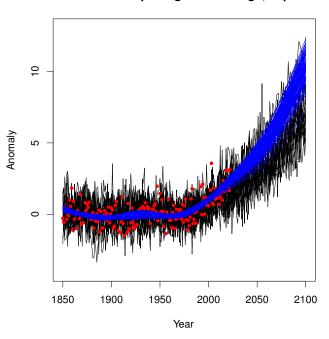


Year

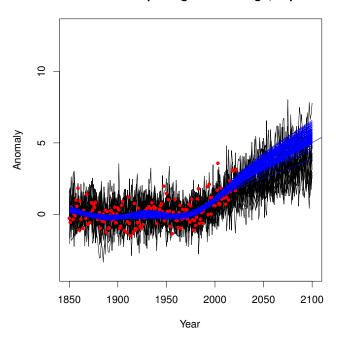




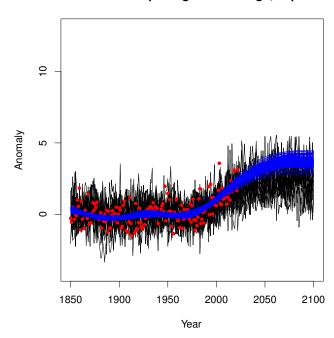
Regional Variable Projections: Northern Europe



Northern Europe Regional Average, ssp245



Northern Europe Regional Average, ssp126

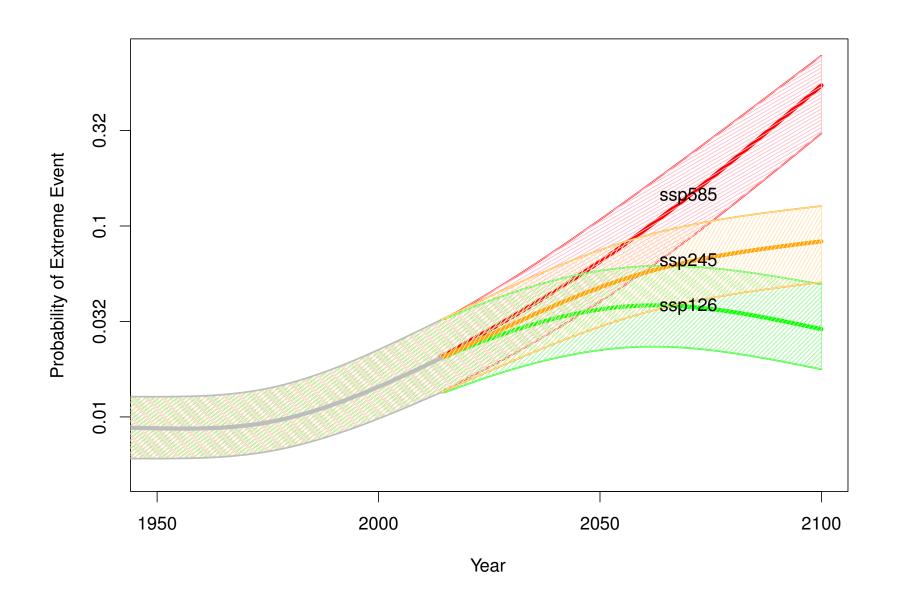


IId: End to End Analysis

- Generate Monte Carlo sample for regional variable condition on climate models
- Conditional on the regional variable, use the spatial GEV model to simulate values of the exceedance probabilities
- Compute 66% prediction intervals ("likely" in IPCC terminology)
- Plot the results

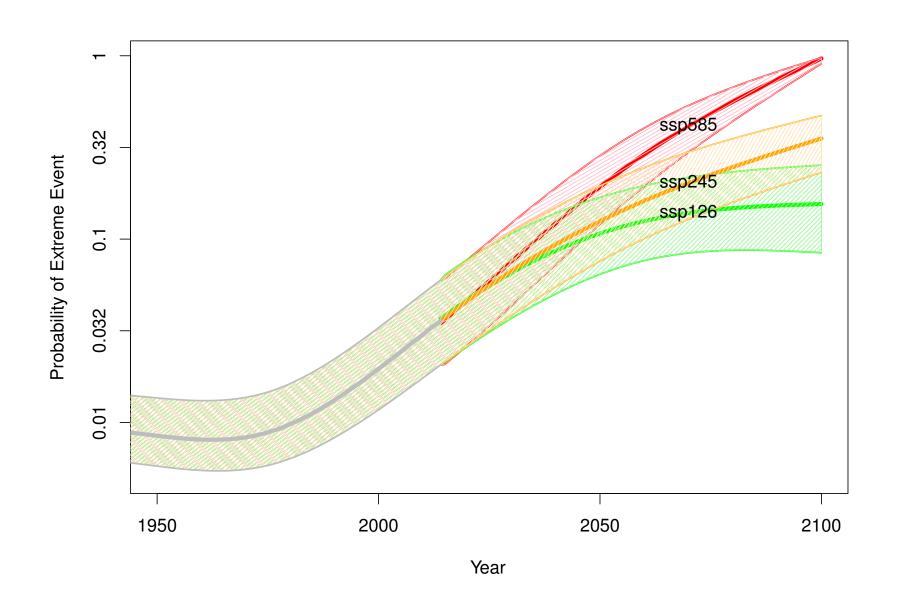
End To End Analysis: Mean Probability of Exceeding 2021 Value for All Stations in Canada

Mean probability over 1850–1949: 0.008; for 2023: 0.025; for 2080: (0.035, 0.072, 0.22) under three scenarios; for 2100: (0.029, 0.083, 0.54)



End To End Analysis: Mean Probability of Exceeding 2022 Value for All Stations in U.K.

Mean probability over 1850–1949: 0.008; for 2023: 0.052; for 2080: (0.15, 0.25, 0.56) under three scenarios; for 2100: (0.16, 0.35, 0.97)

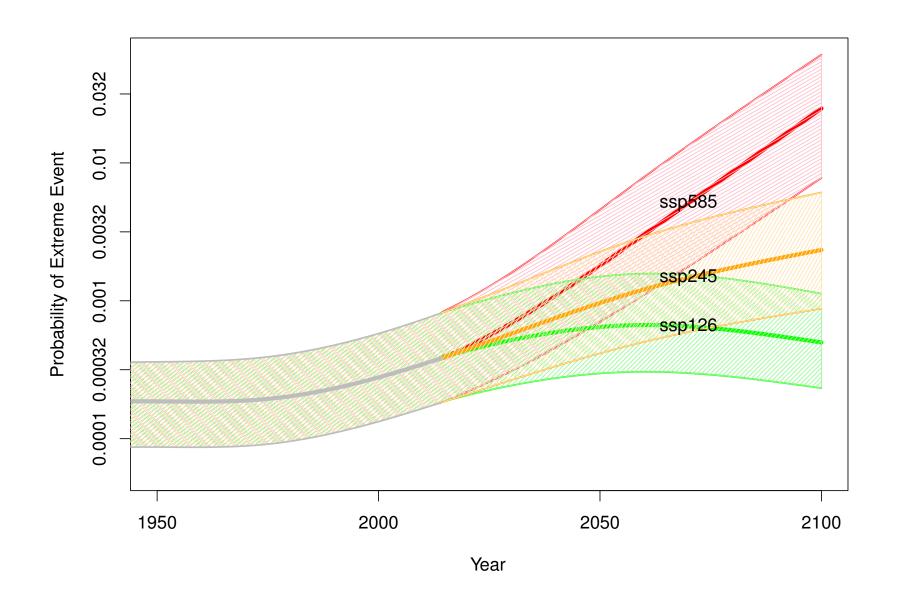


End To End Analysis: Mean Probability of Exceeding 2017 Value for 8 Stations near Houston

Mean probability over 1850-1949: 0.00015; for 2023: 0.00048;

for 2080: (0.00061, 0.0017, 0.0086) under three scenarios;

for 2100: (0.0005, 0.0023, 0.024)



III: Conclusions and Policy Implications

- We have only considered three scenarios for the future, and there are many others, but the analysis demonstrates that there is a *huge* difference among the scenarios for projected probabilities of future extreme events
- Calculation of confidence/prediction/credible intervals is a key point of this analysis. We need to *quantify uncertainty*
- The important caveat: this analysis still relies on statistical assumptions that are not directly verifiable. We need a range of alternative approaches in order to demonstrate that the qualitative conclusions are not dependent on one particular method of analysis.

Slides and datasets: http://rls.sites.oasis.unc.edu/ClimExt/intro.html